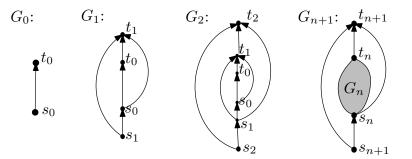

Department of Mathematics National Technical University of Athens Graph Drawing 03 November 2022

## Exercise sheet 3

## Exercise 1 - SPQ-trees


- a) Use the SPQ-tree decomposition of the graph to the left, in order to compute all its possible embeddings. **4 Points**
- b) Find the graph whose SPQ-tree decomposition is shown to the right of the figure below.





Exercise 2 - SP-graph with exponential area

Let  $G_k$  be the graph defined recursively as follows (see following figure). For k = 0,  $G_0$  consists of a single edge  $s_0, t_0$ . Let  $s_k$  and  $t_k$  denote the source and sink of  $G_k$  respectively. Graph  $G_{k+1}$  is constructed from  $G_k$  by adding vertices  $s_{k+1}$  and  $t_{k+1}$ , and edges  $s_{k+1}t_{k+1}$ ,  $s_{k+1}s_k$ ,  $s_kt_{k+1}$  and  $t_kt_{k+1}$  embedded as shown below.



Prove that  $G_k, k \ge 0$ , is a series-parallel graph. 4 Points

## Exercise 3 – area of straight-line drawings of SP-graphs

Prove that the algorithm described in the lecture for straight-line drawings of series-parallel graphs produces drawings whose area has width at most m and height at most 2m, where m is the number of edges of the input graph. 4 Points

Due by: Thursday, November 10 by 6pm.