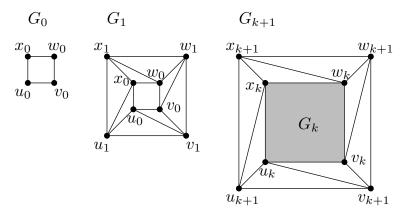

Department of Mathematics National Technical University of Athens Graph Drawing 28 November 2022

Exercise sheet 4


Exercise 1 – Barycentric coordinates - exponential area

Let G be the graph on n + 3 vertices shown in the figure below. The outerface of G consists of vertices u, v, w. The remaining vertices induce a path v_1, \ldots, v_n In the interior of G, such that v_i is adjacent to vertices u and v, $i = 1, \ldots, n$, and v_n is also adjacent to w. Prove that the planar straight-line drawing of G cumputed using barycentric coordinates, requires exponential area. Recall that the barycentric coordinates (x_v, y_v) of an interior vertex v are given by $x_v = \frac{1}{d_v} \sum_{u \in N(v)} x_u$ and $y_v = \frac{1}{d_v} \sum_{u \in N(v)} y_u$, where N(v) is the set of neighbors of v and $d_v = |N(v)|$.

Exercise 2 – Planar graphs with quadratic area

Let G_k be the graph on 4k vertices defined recursively as follows (see following figure). For k = 0, G_0 consists of a 4-cycle u_0, v_0, w_0, x_0 . Let u_k, v_k, w_k, x_k be the vertices of G_k on its outerface. Graph G_{k+1} is constructed from G_k by adding a 4-cycle $u_{k+1}, v_{k+1}, w_{k+1}, x_{k+1}$ in the outerface of G_k , and edges $u_{k+1}u_k, u_{k+1}x_k, v_{k+1}v_k, v_{k+1}u_k, w_{k+1}w_k, w_{k+1}v_k, x_{k+1}x_k$ and $x_{k+1}w_k$ as shown below.

Prove that any straight-line grid drawing of G_k requires width and height linear in k. 4 Points

Exercise 3 – Canonical Order of outerplanar graphs

A graph is outerplanar if it has a planar embedding such that all vertices are on the same face, usually the outer face. It is a maximal outerplanar graph if it is internally triangulated. Describe a special canonical order built precisely for maximal outerplanar graphs.

- a) Reformulate the conditions (C1)-(C3) for maximal outerplanar graphs. Can we enforce a bound on the degree of v_{k+1} ? **2** Points
- b) How can we use the algorithm for maximal planar graphs to obtain a canonical order for maximal outerplanar graphs? 4 Points

Due by: Thursday, December 8 by 6pm.