
1

Visualisation of graphs

Divide and conquer methods
Drawing trees and series-parallel graphs

Antonios Symvonis · Chrysanthi Raftopoulou
Fall semester 2022

The original slides of this presentation were created by researchers at Karlsruhe Institute of Technology (KIT), TU Wien, U Wuerzburg, U Konstanz, ...
The original presentation was modified/updated by A. Symvonis and C. Raftopoulou



2 - 1

Trees

■ Tree - connected graph without cycles
■ here: binary and rooted root

v

right
subtree
Tr(v)

left
subtree
Tl(v)

T(v)

vl

vr



2 - 2

Trees

Tree traversal

■ Tree - connected graph without cycles
■ here: binary and rooted root

v

right
subtree
Tr(v)

left
subtree
Tl(v)

T(v)

vl

vr



2 - 3

Trees

Tree traversal

■ Tree - connected graph without cycles
■ here: binary and rooted

■ Depth-first search

root

v

right
subtree
Tr(v)

left
subtree
Tl(v)

T(v)

vl

vr



2 - 4

Trees

Tree traversal

■ Tree - connected graph without cycles
■ here: binary and rooted

■ Depth-first search

root

v

right
subtree
Tr(v)

left
subtree
Tl(v)

T(v)

■ Pre-order – first parent, then subtrees
vl

vr



2 - 5

Trees

Tree traversal

■ Tree - connected graph without cycles
■ here: binary and rooted

■ Depth-first search

root

v

right
subtree
Tr(v)

left
subtree
Tl(v)

T(v)

■ Pre-order – first parent, then subtrees

■ In-order – left child, parent, right child

vl

vr



2 - 6

Trees

Tree traversal

■ Tree - connected graph without cycles
■ here: binary and rooted

■ Depth-first search

root

v

right
subtree
Tr(v)

left
subtree
Tl(v)

T(v)

■ Pre-order – first parent, then subtrees

■ In-order – left child, parent, right child

■ Post-order – first subtrees, then parent

vl

vr



2 - 7

Trees

Tree traversal

■ Tree - connected graph without cycles
■ here: binary and rooted

■ Depth-first search

root

v

right
subtree
Tr(v)

left
subtree
Tl(v)

T(v)

■ Pre-order – first parent, then subtrees

■ In-order – left child, parent, right child

■ Post-order – first subtrees, then parent

■ Breadth-first search
■ Assignes vertices to levels corresponding to depth

vl

vr



2 - 8

Trees

Tree traversal

■ Tree - connected graph without cycles
■ here: binary and rooted

■ Depth-first search

root

v

right
subtree
Tr(v)

left
subtree
Tl(v)

T(v)

■ Pre-order – first parent, then subtrees

■ In-order – left child, parent, right child

■ Post-order – first subtrees, then parent

■ Breadth-first search
■ Assignes vertices to levels corresponding to depth

Isomporphism simple axial

vl

vr



3 - 1

Level-based layout – applications

Decision tree for outcome prediction after traumatic brain injury
Source: Nature Reviews Neurology



3 - 2

Level-based layout – applications

Aloisius Gaultier 1821

Family tree of LOTR
elves and half-elves



4 - 1

Level-based layout – drawing style

■ What are properties of the layout?
■ What are the drawing conventions?
■ What are aesthetics to optimise?



4 - 2

Level-based layout – drawing style

■ What are properties of the layout?
■ What are the drawing conventions?
■ What are aesthetics to optimise?

Drawing conventions

■ Vertices lie on layers
and have integer coordinates

■ Parent above children and
“within their X-range”
(typically, centered )

■ Edges are straight-line
segments

■ Isomorphic subtrees have
identical drawings



4 - 3

Level-based layout – drawing style

■ What are properties of the layout?
■ What are the drawing conventions?
■ What are aesthetics to optimise?

Drawing conventions

■ Vertices lie on layers
and have integer coordinates

■ Parent above children and
“within their X-range”
(typically, centered )

■ Edges are straight-line
segments

■ Isomorphic subtrees have
identical drawings

Drawing aesthetics

■ Area



5 - 1

Level-based layout A simple approach

Input: A binary tree T
Output: A leveled drawing of T

Y-cooridinates: depth of vertices
X-cooridinates: based on in-order tree traversal



5 - 2

Level-based layout A simple approach

Input: A binary tree T
Output: A leveled drawing of T

Y-cooridinates: depth of vertices
X-cooridinates: based on in-order tree traversal

1

3
5

6

7

8

9

10

11

2 4



5 - 3

Level-based layout A simple approach

Input: A binary tree T
Output: A leveled drawing of T

Y-cooridinates: depth of vertices
X-cooridinates: based on in-order tree traversal

1

3
5

6

7

8

9

10

11

1

2

3

4

5

6

7

8

9

10

11

1

2

3

4

5

6

7

8

9

10

11

2 4



5 - 4

Level-based layout A simple approach

Input: A binary tree T
Output: A leveled drawing of T

Y-cooridinates: depth of vertices
X-cooridinates: based on in-order tree traversal

1

3
5

6

7

8

9

10

11

1

2

3

4

5

6

7

8

9

10

11

1

2

3

4

5

6

7

8

9

10

11

Issues:

■ Drawing is wider
than needed

■ Parents not in the
center of span of
their children

2 4



6 - 1

Level-based layout: A divide and conquer approach

Input: A binary tree T
Output: A leveled drawing of T

T1

T2



6 - 2

Level-based layout: A divide and conquer approach

Input: A binary tree T
Output: A leveled drawing of T

Base case: A single vertex T1

T2



6 - 3

Level-based layout: A divide and conquer approach

Input: A binary tree T
Output: A leveled drawing of T

Base case: A single vertex

Divide: Recursively apply the algorithm to
draw the left and right subtrees

T1

T2



6 - 4

Level-based layout: A divide and conquer approach

Input: A binary tree T
Output: A leveled drawing of T

Base case: A single vertex

Divide: Recursively apply the algorithm to
draw the left and right subtrees

T1

T2

T1 T2



6 - 5

Level-based layout: A divide and conquer approach

Input: A binary tree T
Output: A leveled drawing of T

Base case: A single vertex

Conquer:

Divide: Recursively apply the algorithm to
draw the left and right subtrees

T1

T2

T1 T2

Place subtrees close to each other

Place the root to the center of its children



6 - 6

Level-based layout: A divide and conquer approach

Input: A binary tree T
Output: A leveled drawing of T

Base case: A single vertex

Conquer:

Divide: Recursively apply the algorithm to
draw the left and right subtrees

T1

T2

T1 T2

Place subtrees close to each other

Place the root to the center of its children

QUESTION: How close to each
other to place the subtrees?



7 - 1

Level-based layout: A divide and conquer approach

T1

T2T1 T2

Approach-1: Non-overlapping enclosing rectangles

Distance 1 or 2 (so that root is
placed on grid point)



7 - 2

Level-based layout: A divide and conquer approach

T1

T2

T1 T2

T1 T2

Approach-1: Non-overlapping enclosing rectangles

Distance 1 or 2 (so that root is
placed on grid point)

Approach-2: Overlapping enclosing rectangles

Distance 1 or 2 (so that root is
placed on grid point)



8 - 1

Implementation: Non-overlapping rectangles

■ In a bottom up manner (by a post-order traversal) we compute for each
vertex the 5-tuple:

Width of enclosing
rectangle

Distance to left
boundary

Distance to right
boundary

x-distance to left
child

x-distance to right
child



8 - 2

Implementation: Non-overlapping rectangles

■ In a bottom up manner (by a post-order traversal) we compute for each
vertex the 5-tuple:

Width of enclosing
rectangle

Distance to left
boundary

Distance to right
boundary

x-distance to left
child

x-distance to right
child



8 - 3

Implementation: Non-overlapping rectangles

■ In a bottom up manner (by a post-order traversal) we compute for each
vertex the 5-tuple:

Width of enclosing
rectangle

Distance to left
boundary

Distance to right
boundary

x-distance to left
child

x-distance to right
child

■ For leaves: (0, 0, 0,−,−)

(0, 0, 0,−,−)

(0, 0, 0,−,−)

(0, 0, 0,−,−) (0, 0, 0,−,−)
(0, 0, 0,−,−)



8 - 4

Implementation: Non-overlapping rectangles

■ In a bottom up manner (by a post-order traversal) we compute for each
vertex the 5-tuple:

Width of enclosing
rectangle

Distance to left
boundary

Distance to right
boundary

x-distance to left
child

x-distance to right
child

(0, 0, 0,−,−)

(0, 0, 0,−,−)

(0, 0, 0,−,−) (0, 0, 0,−,−)
(0, 0, 0,−,−)

(2, 1, 1, 1, 1)

(2, 1, 1, 1, 1)

Rule-1:

■ Parent centered above children

■ Parent at grid point

Horizontal distance: 1 or 2



8 - 5

Implementation: Non-overlapping rectangles

■ In a bottom up manner (by a post-order traversal) we compute for each
vertex the 5-tuple:

Width of enclosing
rectangle

Distance to left
boundary

Distance to right
boundary

x-distance to left
child

x-distance to right
child

(0, 0, 0,−,−)

(0, 0, 0,−,−)

(0, 0, 0,−,−) (0, 0, 0,−,−)
(0, 0, 0,−,−)

(2, 1, 1, 1, 1)

(2, 1, 1, 1, 1)

(3, 2, 1, 1, 1)

Rule-1:

■ Parent centered above children

■ Parent at grid point

Horizontal distance: 1 or 2



8 - 6

Implementation: Non-overlapping rectangles

■ In a bottom up manner (by a post-order traversal) we compute for each
vertex the 5-tuple:

Width of enclosing
rectangle

Distance to left
boundary

Distance to right
boundary

x-distance to left
child

x-distance to right
child

(0, 0, 0,−,−)

(0, 0, 0,−,−)

(0, 0, 0,−,−) (0, 0, 0,−,−)
(0, 0, 0,−,−)

(2, 1, 1, 1, 1)

(2, 1, 1, 1, 1)

(3, 2, 1, 1, 1)

(2, 2, 0, 1,−)

Rule-2:

■ Parent above and one unit to the
left/right of single child



8 - 7

Implementation: Non-overlapping rectangles

■ In a bottom up manner (by a post-order traversal) we compute for each
vertex the 5-tuple:

Width of enclosing
rectangle

Distance to left
boundary

Distance to right
boundary

x-distance to left
child

x-distance to right
child

(0, 0, 0,−,−)

(0, 0, 0,−,−)

(0, 0, 0,−,−) (0, 0, 0,−,−)
(0, 0, 0,−,−)

(2, 1, 1, 1, 1)

(2, 1, 1,−, 1)

(2, 1, 1, 1, 1)

(3, 2, 1, 1, 1)

(2, 2, 0, 1,−)

Rule-2:

■ Parent above and one unit to the
left/right of single child



8 - 8

Implementation: Non-overlapping rectangles

■ In a bottom up manner (by a post-order traversal) we compute for each
vertex the 5-tuple:

Width of enclosing
rectangle

Distance to left
boundary

Distance to right
boundary

x-distance to left
child

x-distance to right
child

(0, 0, 0,−,−)

(0, 0, 0,−,−)

(0, 0, 0,−,−) (0, 0, 0,−,−)
(0, 0, 0,−,−)

(2, 1, 1, 1, 1)

(6, 3, 3, 2, 2)

(2, 1, 1,−, 1)

(2, 1, 1, 1, 1)

(3, 2, 1, 1, 1)

(2, 2, 0, 1,−)

Rule-1:

■ Parent centered above children

■ Parent at grid point

Horizontal distance: 1 or 2



9 - 1

Implementation: Non-overlapping rectangles

■ Computation of x-coordinates by pre-order traversal

(0, 0, 0,−,−)

(0, 0, 0,−,−)

(0, 0, 0,−,−) (0, 0, 0,−,−)
(0, 0, 0,−,−)

(2, 1, 1, 1, 1)

(6, 3, 3, 2, 2)

(2, 1, 1,−, 1)

(2, 1, 1, 1, 1)

(3, 2, 1, 1, 1)

(2, 2, 0, 1,−)



9 - 2

Implementation: Non-overlapping rectangles

■ Computation of x-coordinates by pre-order traversal

■ y-coordinate: the depth of each node

(0, 0, 0,−,−)

(0, 0, 0,−,−)

(0, 0, 0,−,−) (0, 0, 0,−,−)
(0, 0, 0,−,−)

(2, 1, 1, 1, 1)

(6, 3, 3, 2, 2)

(2, 1, 1,−, 1)

(2, 1, 1, 1, 1)

(3, 2, 1, 1, 1)

(2, 2, 0, 1,−)



9 - 3

Implementation: Non-overlapping rectangles

■ Computation of x-coordinates by pre-order traversal

■ y-coordinate: the depth of each node

(3,0)

(0, 0, 0,−,−)

(0, 0, 0,−,−)

(0, 0, 0,−,−) (0, 0, 0,−,−)
(0, 0, 0,−,−)

(2, 1, 1, 1, 1)

(6, 3, 3, 2, 2)

(2, 1, 1,−, 1)

(2, 1, 1, 1, 1)

(3, 2, 1, 1, 1)

(2, 2, 0, 1,−)



9 - 4

Implementation: Non-overlapping rectangles

■ Computation of x-coordinates by pre-order traversal

■ y-coordinate: the depth of each node

(3,0)

(1,−1)

(0, 0, 0,−,−)

(0, 0, 0,−,−)

(0, 0, 0,−,−) (0, 0, 0,−,−)
(0, 0, 0,−,−)

(2, 1, 1, 1, 1)

(6, 3, 3, 2, 2)

(2, 1, 1,−, 1)

(2, 1, 1, 1, 1)

(3, 2, 1, 1, 1)

(2, 2, 0, 1,−)



9 - 5

Implementation: Non-overlapping rectangles

■ Computation of x-coordinates by pre-order traversal

■ y-coordinate: the depth of each node

(3,0)

(1,−1)

(2,−2)

(1,−3)

(0,−4) (2,−4)
(0, 0, 0,−,−)

(0, 0, 0,−,−)

(0, 0, 0,−,−) (0, 0, 0,−,−)
(0, 0, 0,−,−)

(2, 1, 1, 1, 1)

(6, 3, 3, 2, 2)

(2, 1, 1,−, 1)

(2, 1, 1, 1, 1)

(3, 2, 1, 1, 1)

(2, 2, 0, 1,−)



9 - 6

Implementation: Non-overlapping rectangles

■ Computation of x-coordinates by pre-order traversal

■ y-coordinate: the depth of each node

(3,0)

(1,−1)

(2,−2)

(1,−3)
(3,−3)

(4,−2)

(5,−3)

(6,−2)

(0,−4) (2,−4)

(5,−1)

(0, 0, 0,−,−)

(0, 0, 0,−,−)

(0, 0, 0,−,−) (0, 0, 0,−,−)
(0, 0, 0,−,−)

(2, 1, 1, 1, 1)

(6, 3, 3, 2, 2)

(2, 1, 1,−, 1)

(2, 1, 1, 1, 1)

(3, 2, 1, 1, 1)

(2, 2, 0, 1,−)



9 - 7

Implementation: Non-overlapping rectangles

■ Computation of x-coordinates by pre-order traversal

■ y-coordinate: the depth of each node

(3,0)

(1,−1)

(2,−2)

(1,−3)
(3,−3)

(4,−2)

(5,−3)

(6,−2)

(0,−4) (2,−4)

(5,−1)

The final drawing

(0, 0, 0,−,−)

(0, 0, 0,−,−)

(0, 0, 0,−,−) (0, 0, 0,−,−)
(0, 0, 0,−,−)

(2, 1, 1, 1, 1)

(6, 3, 3, 2, 2)

(2, 1, 1,−, 1)

(2, 1, 1, 1, 1)

(3, 2, 1, 1, 1)

(2, 2, 0, 1,−)



10 - 1

Implementation: Overlapping rectangles

T1

T2

Recall...

Approach-1: Non-overlapping enclosing rectangles

T1 T2



10 - 2

Implementation: Overlapping rectangles

T1

T2

T1 T2

Approach-2: Overlapping enclosing rectangles

Distance 1 or 2 (so that root is
placed on grid point)

Recall...

Approach-1: Non-overlapping enclosing rectangles



10 - 3

Implementation: Overlapping rectangles

T1

T2

T1 T2

Approach-2: Overlapping enclosing rectangles

Distance 1 or 2 (so that root is
placed on grid point)

Recall...

Approach-1: Non-overlapping enclosing rectangles



10 - 4

Implementation: Overlapping rectangles

T1

T2

T1 T2

Approach-2: Overlapping enclosing rectangles

Distance 1 or 2 (so that root is
placed on grid point)

Recall...

Approach-1: Non-overlapping enclosing rectangles

T1



10 - 5

Implementation: Overlapping rectangles

T1

T2

T1 T2

Approach-2: Overlapping enclosing rectangles

Distance 1 or 2 (so that root is
placed on grid point)

Recall...

Approach-1: Non-overlapping enclosing rectangles

T1 T1



10 - 6

Implementation: Overlapping rectangles

T1

T2

T1 T2

Approach-2: Overlapping enclosing rectangles

Distance 1 or 2 (so that root is
placed on grid point)

Recall...

Approach-1: Non-overlapping enclosing rectangles

T1 T1



10 - 7

Implementation: Overlapping rectangles

T1

T2

T1 T2

Approach-2: Overlapping enclosing rectangles

Distance 1 or 2 (so that root is
placed on grid point)

Recall...

Approach-1: Non-overlapping enclosing rectangles

T1 T1

rectangles

contour



11 - 1

Implementation: Overlapping rectangles

The left/right contour of leveled tree drawing
The left/right contour of a leveled tree drawing of height h is the sequence
of vertices (v0, . . . , vh) such that vertex vi is the leftmost/rightmost vertex
at depth i



11 - 2

Implementation: Overlapping rectangles

The left/right contour of leveled tree drawing
The left/right contour of a leveled tree drawing of height h is the sequence
of vertices (v0, . . . , vh) such that vertex vi is the leftmost/rightmost vertex
at depth i



11 - 3

Implementation: Overlapping rectangles

The left/right contour of leveled tree drawing
The left/right contour of a leveled tree drawing of height h is the sequence
of vertices (v0, . . . , vh) such that vertex vi is the leftmost/rightmost vertex
at depth i

Left contour



11 - 4

Implementation: Overlapping rectangles

The left/right contour of leveled tree drawing
The left/right contour of a leveled tree drawing of height h is the sequence
of vertices (v0, . . . , vh) such that vertex vi is the leftmost/rightmost vertex
at depth i

Left contour



11 - 5

Implementation: Overlapping rectangles

The left/right contour of leveled tree drawing
The left/right contour of a leveled tree drawing of height h is the sequence
of vertices (v0, . . . , vh) such that vertex vi is the leftmost/rightmost vertex
at depth i

Left contour



11 - 6

Implementation: Overlapping rectangles

The left/right contour of leveled tree drawing
The left/right contour of a leveled tree drawing of height h is the sequence
of vertices (v0, . . . , vh) such that vertex vi is the leftmost/rightmost vertex
at depth i

Left contour



11 - 7

Implementation: Overlapping rectangles

The left/right contour of leveled tree drawing
The left/right contour of a leveled tree drawing of height h is the sequence
of vertices (v0, . . . , vh) such that vertex vi is the leftmost/rightmost vertex
at depth i

Left contour



11 - 8

Implementation: Overlapping rectangles

The left/right contour of leveled tree drawing
The left/right contour of a leveled tree drawing of height h is the sequence
of vertices (v0, . . . , vh) such that vertex vi is the leftmost/rightmost vertex
at depth i

Left contour



11 - 9

Implementation: Overlapping rectangles

The left/right contour of leveled tree drawing
The left/right contour of a leveled tree drawing of height h is the sequence
of vertices (v0, . . . , vh) such that vertex vi is the leftmost/rightmost vertex
at depth i

Left contour



11 - 10

Implementation: Overlapping rectangles

The left/right contour of leveled tree drawing
The left/right contour of a leveled tree drawing of height h is the sequence
of vertices (v0, . . . , vh) such that vertex vi is the leftmost/rightmost vertex
at depth i

Left contour



11 - 11

Implementation: Overlapping rectangles

The left/right contour of leveled tree drawing
The left/right contour of a leveled tree drawing of height h is the sequence
of vertices (v0, . . . , vh) such that vertex vi is the leftmost/rightmost vertex
at depth i

Left contour



11 - 12

Implementation: Overlapping rectangles

The left/right contour of leveled tree drawing
The left/right contour of a leveled tree drawing of height h is the sequence
of vertices (v0, . . . , vh) such that vertex vi is the leftmost/rightmost vertex
at depth i

Left contour

Right contour



12 - 1

Implementation: Overlapping rectangles

Computation of the left contour of a tree rooted at u, given
–the left contours of its subtrees
–the heights of its subtress



12 - 2

Implementation: Overlapping rectangles

Computation of the left contour of a tree rooted at u, given
–the left contours of its subtrees
–the heights of its subtress

Case-1: h(TL
u ) = h(TR

u )

u

TL
u TR

u



12 - 3

Implementation: Overlapping rectangles

Computation of the left contour of a tree rooted at u, given
–the left contours of its subtrees
–the heights of its subtress

O(1)-time

Case-1: h(TL
u ) = h(TR

u )

u

TL
u TR

u



12 - 4

Implementation: Overlapping rectangles

Computation of the left contour of a tree rooted at u, given
–the left contours of its subtrees
–the heights of its subtress

O(1)-time

Case-1: h(TL
u ) = h(TR

u ) Case-2: h(TL
u ) < h(TR

u )

u

TL
u TR

u

u

TL
u

TR
u



12 - 5

Implementation: Overlapping rectangles

Computation of the left contour of a tree rooted at u, given
–the left contours of its subtrees
–the heights of its subtress

O(1)-time

Case-1: h(TL
u ) = h(TR

u ) Case-2: h(TL
u ) < h(TR

u )

u

TL
u TR

u

u

TL
u

TR
u



12 - 6

Implementation: Overlapping rectangles

Computation of the left contour of a tree rooted at u, given
–the left contours of its subtrees
–the heights of its subtress

O(1)-time

Case-1: h(TL
u ) = h(TR

u ) Case-2: h(TL
u ) < h(TR

u )

u

TL
u TR

u a

u

TL
u

TR
u



12 - 7

Implementation: Overlapping rectangles

Computation of the left contour of a tree rooted at u, given
–the left contours of its subtrees
–the heights of its subtress

O(1)-time

Case-1: h(TL
u ) = h(TR

u ) Case-2: h(TL
u ) < h(TR

u )

O(h(TL
u ))-time

[We traverse TL
u and TR

u simultaneously in

order to identify vertex a of TR
u ]

u

TL
u TR

u a

u

TL
u

TR
u



12 - 8

Implementation: Overlapping rectangles

Computation of the left contour of a tree rooted at u, given
–the left contours of its subtrees
–the heights of its subtress

O(1)-time

Case-1: h(TL
u ) = h(TR

u ) Case-2: h(TL
u ) < h(TR

u )

O(h(TL
u ))-time

[We traverse TL
u and TR

u simultaneously in

order to identify vertex a of TR
u ]

Case-3: h(TL
u ) > h(TR

u )

u

TL
u TR

u a

u

TL
u

TR
u

u

TL
u

TR
u



12 - 9

Implementation: Overlapping rectangles

Computation of the left contour of a tree rooted at u, given
–the left contours of its subtrees
–the heights of its subtress

O(1)-time

Case-1: h(TL
u ) = h(TR

u ) Case-2: h(TL
u ) < h(TR

u )

O(h(TL
u ))-time

[We traverse TL
u and TR

u simultaneously in

order to identify vertex a of TR
u ]

Case-3: h(TL
u ) > h(TR

u )

O(1)-time

u

TL
u TR

u a

u

TL
u

TR
u

u

TL
u

TR
u



13 - 1

Implementation: Overlapping rectangles

Total cost for computing the contours of a tree:
[We build each contour in a bottom-up fashion through a postorder traversal.]



13 - 2

Implementation: Overlapping rectangles

Total cost for computing the contours of a tree:
[We build each contour in a bottom-up fashion through a postorder traversal.]

Left contour

Right contour



13 - 3

Implementation: Overlapping rectangles

Total cost for computing the contours of a tree:
[We build each contour in a bottom-up fashion through a postorder traversal.]

Left contour

Right contour



13 - 4

Implementation: Overlapping rectangles

Total cost for computing the contours of a tree:
[We build each contour in a bottom-up fashion through a postorder traversal.]

Left contour

Right contour



13 - 5

Implementation: Overlapping rectangles

Total cost for computing the contours of a tree:
[We build each contour in a bottom-up fashion through a postorder traversal.]

Left contour

Right contour



13 - 6

Implementation: Overlapping rectangles

Total cost for computing the contours of a tree:
[We build each contour in a bottom-up fashion through a postorder traversal.]

Left contour

Right contour



13 - 7

Implementation: Overlapping rectangles

Total cost for computing the contours of a tree:
[We build each contour in a bottom-up fashion through a postorder traversal.]

Left contour

Right contour



13 - 8

Implementation: Overlapping rectangles

Total cost for computing the contours of a tree:
[We build each contour in a bottom-up fashion through a postorder traversal.]

Left contour

Right contour



13 - 9

Implementation: Overlapping rectangles

Total cost for computing the contours of a tree:
[We build each contour in a bottom-up fashion through a postorder traversal.]

Left contour

Right contour



13 - 10

Implementation: Overlapping rectangles

Total cost for computing the contours of a tree:
[We build each contour in a bottom-up fashion through a postorder traversal.]

Left contour

Right contour



13 - 11

Implementation: Overlapping rectangles

Total cost for computing the contours of a tree:
[We build each contour in a bottom-up fashion through a postorder traversal.]

Left contour

Right contour



13 - 12

Implementation: Overlapping rectangles

Total cost for computing the contours of a tree:
[We build each contour in a bottom-up fashion through a postorder traversal.]

Left contour

Right contour



13 - 13

Implementation: Overlapping rectangles

Total cost for computing the contours of a tree:
[We build each contour in a bottom-up fashion through a postorder traversal.]

Left contour

Right contour



13 - 14

Implementation: Overlapping rectangles

Total cost for computing the contours of a tree:
[We build each contour in a bottom-up fashion through a postorder traversal.]

Left contour

Right contour



13 - 15

Implementation: Overlapping rectangles

Total cost for computing the contours of a tree:
[We build each contour in a bottom-up fashion through a postorder traversal.]

Left contour

Right contour



14 - 1

Implementation: Overlapping rectangles

Total cost for computing the contours of a tree:
[We build each contour in a bottom-up fashion through a postorder traversal.]



14 - 2

Implementation: Overlapping rectangles

Total cost for computing the contours of a tree:
[We build each contour in a bottom-up fashion through a postorder traversal.]

C(T) ≤ ∑
u∈V(T)

1+min(h(TL
u ), h(TR

u ))

= n + ∑
u∈V(T)

min(h(TL
u ), h(TR

u ))

< n + n (Lemma 1)

= 2n

Thus, C(T) ≤ 2n

a

u

TL
u

TR
u

a

u

TL
u

TR
u



14 - 3

Implementation: Overlapping rectangles

Total cost for computing the contours of a tree:
[We build each contour in a bottom-up fashion through a postorder traversal.]

C(T) ≤ ∑
u∈V(T)

1+min(h(TL
u ), h(TR

u ))

= n + ∑
u∈V(T)

min(h(TL
u ), h(TR

u ))

< n + n (Lemma 1)

= 2n

Thus, C(T) ≤ 2n

a

u

TL
u

TR
u

a

u

TL
u

TR
u



15 - 1

Implementation: Overlapping rectangles

Lemma 1: For each n-vertex binary tree it holds that:

∑
u∈V(T)

min(h(TL
u ), h(TR

u )) < n



15 - 2

Implementation: Overlapping rectangles

Lemma 1: For each n-vertex binary tree it holds that:

∑
u∈V(T)

min(h(TL
u ), h(TR

u )) < n

Proof:

■ The height of each subtree is equal to the length of the
left/right contour

■ We connect each vertex from contour of the shorter subtree
to the visible vertex on the contour of the opposite subtree.



15 - 3

Implementation: Overlapping rectangles

Lemma 1: For each n-vertex binary tree it holds that:

∑
u∈V(T)

min(h(TL
u ), h(TR

u )) < n

Proof:

■ The height of each subtree is equal to the length of the
left/right contour

■ We connect each vertex from contour of the shorter subtree
to the visible vertex on the contour of the opposite subtree.



15 - 4

Implementation: Overlapping rectangles

Lemma 1: For each n-vertex binary tree it holds that:

∑
u∈V(T)

min(h(TL
u ), h(TR

u )) < n

Proof:

■ The height of each subtree is equal to the length of the
left/right contour

■ We connect each vertex from contour of the shorter subtree
to the visible vertex on the contour of the opposite subtree.



15 - 5

Implementation: Overlapping rectangles

Lemma 1: For each n-vertex binary tree it holds that:

∑
u∈V(T)

min(h(TL
u ), h(TR

u )) < n

Proof:

■ The height of each subtree is equal to the length of the
left/right contour

■ We connect each vertex from contour of the shorter subtree
to the visible vertex on the contour of the opposite subtree.



15 - 6

Implementation: Overlapping rectangles

Lemma 1: For each n-vertex binary tree it holds that:

∑
u∈V(T)

min(h(TL
u ), h(TR

u )) < n

Proof:

■ The height of each subtree is equal to the length of the
left/right contour

■ We connect each vertex from contour of the shorter subtree
to the visible vertex on the contour of the opposite subtree.



15 - 7

Implementation: Overlapping rectangles

Lemma 1: For each n-vertex binary tree it holds that:

∑
u∈V(T)

min(h(TL
u ), h(TR

u )) < n

Proof:

■ The height of each subtree is equal to the length of the
left/right contour

■ We connect each vertex from contour of the shorter subtree
to the visible vertex on the contour of the opposite subtree.



15 - 8

Implementation: Overlapping rectangles

Lemma 1: For each n-vertex binary tree it holds that:

∑
u∈V(T)

min(h(TL
u ), h(TR

u )) < n

Proof:

■ The height of each subtree is equal to the length of the
left/right contour

■ We connect each vertex from contour of the shorter subtree
to the visible vertex on the contour of the opposite subtree.



15 - 9

Implementation: Overlapping rectangles

Lemma 1: For each n-vertex binary tree it holds that:

∑
u∈V(T)

min(h(TL
u ), h(TR

u )) < n

Proof:

■ The height of each subtree is equal to the length of the
left/right contour

■ We connect each vertex from contour of the shorter subtree
to the visible vertex on the contour of the opposite subtree.



15 - 10

Implementation: Overlapping rectangles

Lemma 1: For each n-vertex binary tree it holds that:

∑
u∈V(T)

min(h(TL
u ), h(TR

u )) < n

Proof:

■ The height of each subtree is equal to the length of the
left/right contour

■ We connect each vertex from contour of the shorter subtree
to the visible vertex on the contour of the opposite subtree.



15 - 11

Implementation: Overlapping rectangles

Lemma 1: For each n-vertex binary tree it holds that:

∑
u∈V(T)

min(h(TL
u ), h(TR

u )) < n

Proof:

■ The height of each subtree is equal to the length of the
left/right contour

■ We connect each vertex from contour of the shorter subtree
to the visible vertex on the contour of the opposite subtree.



15 - 12

Implementation: Overlapping rectangles

Lemma 1: For each n-vertex binary tree it holds that:

∑
u∈V(T)

min(h(TL
u ), h(TR

u )) < n

Proof:

■ The height of each subtree is equal to the length of the
left/right contour

■ We connect each vertex from contour of the shorter subtree
to the visible vertex on the contour of the opposite subtree.



15 - 13

Implementation: Overlapping rectangles

Lemma 1: For each n-vertex binary tree it holds that:

∑
u∈V(T)

min(h(TL
u ), h(TR

u )) < n

Proof:

■ The height of each subtree is equal to the length of the
left/right contour

■ We connect each vertex from contour of the shorter subtree
to the visible vertex on the contour of the opposite subtree.

■ We can charge each connection to the vertex at its left endpoint

■ Observe that we have at most one connection out of the right
side of each vertex. Thus, at most n connections.



16 - 1

Level-based layout – result

Theorem. (Reingold & Tilford ’81)
Let T be a binary tree with n vertices. We can
construct a drawing Γ of T in O(n) time, such that:
■ Γ is planar, straight-line and strictly downward
■ Γ is leveled: y-coordinate of vertex v is −depth(v)
■ Vertical and horizontal distances are at least 1
■ Each vertex is centred wrt its children
■ Area of Γ is in O(n2)
■ Simply isomorphic subtrees have congruent

drawings, up to translation
■ Axially isomorphic trees have congruent drawings,

up to translation and reflection around y-axis



16 - 2

Level-based layout – result

Theorem. (Reingold & Tilford ’81)
Let T be a binary tree with n vertices. We can
construct a drawing Γ of T in O(n) time, such that:
■ Γ is planar, straight-line and strictly downward
■ Γ is leveled: y-coordinate of vertex v is −depth(v)
■ Vertical and horizontal distances are at least 1
■ Each vertex is centred wrt its children
■ Area of Γ is in O(n2)
■ Simply isomorphic subtrees have congruent

drawings, up to translation
■ Axially isomorphic trees have congruent drawings,

up to translation and reflection around y-axis



16 - 3

Level-based layout – result

Theorem. (Reingold & Tilford ’81)
Let T be a binary tree with n vertices. We can
construct a drawing Γ of T in O(n) time, such that:
■ Γ is planar, straight-line and strictly downward
■ Γ is leveled: y-coordinate of vertex v is −depth(v)
■ Vertical and horizontal distances are at least 1
■ Each vertex is centred wrt its children
■ Area of Γ is in O(n2)
■ Simply isomorphic subtrees have congruent

drawings, up to translation
■ Axially isomorphic trees have congruent drawings,

up to translation and reflection around y-axis



16 - 4

Level-based layout – result

Theorem. (Reingold & Tilford ’81)
Let T be a binary tree with n vertices. We can
construct a drawing Γ of T in O(n) time, such that:
■ Γ is planar, straight-line and strictly downward
■ Γ is leveled: y-coordinate of vertex v is −depth(v)
■ Vertical and horizontal distances are at least 1
■ Each vertex is centred wrt its children
■ Area of Γ is in O(n2)
■ Simply isomorphic subtrees have congruent

drawings, up to translation
■ Axially isomorphic trees have congruent drawings,

up to translation and reflection around y-axis



16 - 5

Level-based layout – result

Theorem. (Reingold & Tilford ’81)
Let T be a binary tree with n vertices. We can
construct a drawing Γ of T in O(n) time, such that:
■ Γ is planar, straight-line and strictly downward
■ Γ is leveled: y-coordinate of vertex v is −depth(v)
■ Vertical and horizontal distances are at least 1
■ Each vertex is centred wrt its children
■ Area of Γ is in O(n2)
■ Simply isomorphic subtrees have congruent

drawings, up to translation
■ Axially isomorphic trees have congruent drawings,

up to translation and reflection around y-axis

generalisable



17 - 1

Level-based layout – area

■ Presented algorithm tries
to minimise width

■ Does not always achieve that!



17 - 2

Level-based layout – area

■ Presented algorithm tries
to minimise width

■ Does not always achieve that!

12



17 - 3

Level-based layout – area

■ Presented algorithm tries
to minimise width

■ Does not always achieve that!

10

12



17 - 4

Level-based layout – area

■ Presented algorithm tries
to minimise width

■ Does not always achieve that!

10

12

■ Divide-and-conquer strategy
cannot achieve optimal width

Suboptimal
structure leads to
better drawing



17 - 5

Level-based layout – area

■ Presented algorithm tries
to minimise width

■ Does not always achieve that!

10

12

■ Divide-and-conquer strategy
cannot achieve optimal width

■ Drawing with min width
(but without the grid) can be
constructed by an LP

Suboptimal
structure leads to
better drawing



17 - 6

Level-based layout – area

■ Presented algorithm tries
to minimise width

■ Does not always achieve that!

10

12

■ Divide-and-conquer strategy
cannot achieve optimal width

■ Drawing with min width
(but without the grid) can be
constructed by an LP

■ Problem is NP-hard on grid

Suboptimal
structure leads to
better drawing



18 - 1

Drawing-style: hv-drawings

Applications
■ Cons cell diagram in LISP
■ Cons(constructs) are memory objects

which hold two values or pointers to values

1 3

5

4

9 12

10 11

2 6 7 8 /

/

/

/

/

Source: after gajon.org/trees-linked-lists-common-lisp/



18 - 2

Drawing-style: hv-drawings

Applications
■ Cons cell diagram in LISP
■ Cons(constructs) are memory objects

which hold two values or pointers to values

1 3

5

4

9 12

10 11

2 6 7 8 /

/

/

/

/

Source: after gajon.org/trees-linked-lists-common-lisp/

1

2 3 4 5

6 7 8 9

12

10 11



18 - 3

Drawing-style: hv-drawings

Applications
■ Cons cell diagram in LISP
■ Cons(constructs) are memory objects

which hold two values or pointers to values

1 3

5

4

9 12

10 11

2 6 7 8 /

/

/

/

/

Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

■ Children are vertically and
horizontally aligned with their
parent

■ The bounding boxes of the
subtrees of the children are
disjoint

Drawing aesthetics

■ Height, width, area



18 - 4

Drawing-style: hv-drawings

Applications
■ Cons cell diagram in LISP
■ Cons(constructs) are memory objects

which hold two values or pointers to values

1 3

5

4

9 12

10 11

2 6 7 8 /

/

/

/

/

Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

■ Children are vertically and
horizontally aligned with their
parent

■ The bounding boxes of the
subtrees of the children are
disjoint

Drawing aesthetics

■ Height, width, area



18 - 5

Drawing-style: hv-drawings

Applications
■ Cons cell diagram in LISP
■ Cons(constructs) are memory objects

which hold two values or pointers to values

1 3

5

4

9 12

10 11

2 6 7 8 /

/

/

/

/

Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

■ Children are vertically and
horizontally aligned with their
parent

■ The bounding boxes of the
subtrees of the children are
disjoint

Drawing aesthetics

■ Height, width, area



18 - 6

Drawing-style: hv-drawings

Applications
■ Cons cell diagram in LISP
■ Cons(constructs) are memory objects

which hold two values or pointers to values

1 3

5

4

9 12

10 11

2 6 7 8 /

/

/

/

/

Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

■ Children are vertically and
horizontally aligned with their
parent

■ The bounding boxes of the
subtrees of the children are
disjoint

Drawing aesthetics

■ Height, width, area



19 - 1

hv-drawings – algorithm

Input: A binary tree T
Output: A hv-drawing of T

Base case:
Divide: Recursively apply the algorithm to
draw the left and right subtrees

Conquer:



19 - 2

hv-drawings – algorithm

Input: A binary tree T
Output: A hv-drawing of T

Base case:
Divide: Recursively apply the algorithm to
draw the left and right subtrees

Conquer: horizontal combination vertical combination



20 - 1

hv-drawing – right-heavy hv-layout

Right-heavy approach
■ Always apply horizontal combination
■ Place the larger subtree to the right

■ Size of subtree := number of vertices



20 - 2

hv-drawing – right-heavy hv-layout

Right-heavy approach
■ Always apply horizontal combination
■ Place the larger subtree to the right

■ Size of subtree := number of vertices



20 - 3

hv-drawing – right-heavy hv-layout

Right-heavy approach
■ Always apply horizontal combination
■ Place the larger subtree to the right

■ Size of subtree := number of vertices



20 - 4

hv-drawing – right-heavy hv-layout

Right-heavy approach
■ Always apply horizontal combination
■ Place the larger subtree to the right

■ Size of subtree := number of vertices



20 - 5

hv-drawing – right-heavy hv-layout

Right-heavy approach
■ Always apply horizontal combination
■ Place the larger subtree to the right

■ Size of subtree := number of vertices



20 - 6

hv-drawing – right-heavy hv-layout

Right-heavy approach
■ Always apply horizontal combination
■ Place the larger subtree to the right

■ Size of subtree := number of vertices



20 - 7

hv-drawing – right-heavy hv-layout

Right-heavy approach
■ Always apply horizontal combination
■ Place the larger subtree to the right

■ Size of subtree := number of vertices



20 - 8

hv-drawing – right-heavy hv-layout

Right-heavy approach
■ Always apply horizontal combination
■ Place the larger subtree to the right

■ Size of subtree := number of vertices



20 - 9

hv-drawing – right-heavy hv-layout

Lemma. Let T be a binary tree. The drawing
constructed by the right-heavy approach has
■ width at most n− 1 and
■ height at most log n.

Right-heavy approach
■ Always apply horizontal combination
■ Place the larger subtree to the right

■ Size of subtree := number of vertices



20 - 10

hv-drawing – right-heavy hv-layout

Lemma. Let T be a binary tree. The drawing
constructed by the right-heavy approach has
■ width at most n− 1 and
■ height at most log n.

Right-heavy approach
■ Always apply horizontal combination
■ Place the larger subtree to the right

■ Size of subtree := number of vertices



20 - 11

hv-drawing – right-heavy hv-layout

Lemma. Let T be a binary tree. The drawing
constructed by the right-heavy approach has
■ width at most n− 1 and
■ height at most log n.

Right-heavy approach
■ Always apply horizontal combination
■ Place the larger subtree to the right

■ Size of subtree := number of vertices



20 - 12

hv-drawing – right-heavy hv-layout

Lemma. Let T be a binary tree. The drawing
constructed by the right-heavy approach has
■ width at most n− 1 and
■ height at most log n.

Right-heavy approach
■ Always apply horizontal combination
■ Place the larger subtree to the right

■ Size of subtree := number of vertices



20 - 13

hv-drawing – right-heavy hv-layout

Lemma. Let T be a binary tree. The drawing
constructed by the right-heavy approach has
■ width at most n− 1 and
■ height at most log n.

at least ·2

Right-heavy approach
■ Always apply horizontal combination
■ Place the larger subtree to the right

■ Size of subtree := number of vertices



20 - 14

hv-drawing – right-heavy hv-layout

Lemma. Let T be a binary tree. The drawing
constructed by the right-heavy approach has
■ width at most n− 1 and
■ height at most log n.

at least ·2

Right-heavy approach
■ Always apply horizontal combination
■ Place the larger subtree to the right

■ Size of subtree := number of vertices



20 - 15

hv-drawing – right-heavy hv-layout

Lemma. Let T be a binary tree. The drawing
constructed by the right-heavy approach has
■ width at most n− 1 and
■ height at most log n.

at least ·2

Right-heavy approach
■ Always apply horizontal combination
■ Place the larger subtree to the right

■ Size of subtree := number of vertices



20 - 16

hv-drawing – right-heavy hv-layout

Lemma. Let T be a binary tree. The drawing
constructed by the right-heavy approach has
■ width at most n− 1 and
■ height at most log n.

at least ·2

at least ·2

Right-heavy approach
■ Always apply horizontal combination
■ Place the larger subtree to the right

■ Size of subtree := number of vertices



20 - 17

hv-drawing – right-heavy hv-layout

Lemma. Let T be a binary tree. The drawing
constructed by the right-heavy approach has
■ width at most n− 1 and
■ height at most log n.

at least ·2

at least ·2

Right-heavy approach
■ Always apply horizontal combination
■ Place the larger subtree to the right

■ Size of subtree := number of vertices



20 - 18

hv-drawing – right-heavy hv-layout

Lemma. Let T be a binary tree. The drawing
constructed by the right-heavy approach has
■ width at most n− 1 and
■ height at most log n.

at least ·2

at least ·2

at least ·2

Right-heavy approach
■ Always apply horizontal combination
■ Place the larger subtree to the right

■ Size of subtree := number of vertices



20 - 19

hv-drawing – right-heavy hv-layout

Lemma. Let T be a binary tree. The drawing
constructed by the right-heavy approach has
■ width at most n− 1 and
■ height at most log n.

at least ·2

at least ·2

at least ·2

Right-heavy approach
■ Always apply horizontal combination
■ Place the larger subtree to the right

■ Size of subtree := number of vertices



20 - 20

hv-drawing – right-heavy hv-layout

Lemma. Let T be a binary tree. The drawing
constructed by the right-heavy approach has
■ width at most n− 1 and
■ height at most log n.

at least ·2

at least ·2

at least ·2

Right-heavy approach
■ Always apply horizontal combination
■ Place the larger subtree to the right

■ Size of subtree := number of vertices

How to implement this
in linear time?



21 - 1

Computing right-heavy hv-layout in linear time

■ At each node u we store the 5-tuple:
u : (xu, yu,Wu, Hu, su)

where:

■ xu, yu are the x and y coordinates of u
■ Wu is the width of the layout of subtree Tu
■ Hu is the height of the layout of subtree Tu
■ su is the size of Tu

u



21 - 2

Computing right-heavy hv-layout in linear time

■ At each node u we store the 5-tuple:
u : (xu, yu,Wu, Hu, su)

where:

■ xu, yu are the x and y coordinates of u
■ Wu is the width of the layout of subtree Tu
■ Hu is the height of the layout of subtree Tu
■ su is the size of Tu

u
(0, 0)

: (xu, yu)

xu

yu



21 - 3

Computing right-heavy hv-layout in linear time

■ At each node u we store the 5-tuple:
u : (xu, yu,Wu, Hu, su)

where:

■ xu, yu are the x and y coordinates of u
■ Wu is the width of the layout of subtree Tu
■ Hu is the height of the layout of subtree Tu
■ su is the size of Tu

u

su

Hu

Wu



22 - 1

Computing right-heavy hv-layout in linear time

■ Compute in a bottom-up fashion (by a post-order traversal) su, Wu and Hu



22 - 2

Computing right-heavy hv-layout in linear time

■ Compute in a bottom-up fashion (by a post-order traversal) su, Wu and Hu

u : su = sv + sw + 1



22 - 3

Computing right-heavy hv-layout in linear time

■ Compute in a bottom-up fashion (by a post-order traversal) su, Wu and Hu

u : su = sv + sw + 1

if (sv < sw)
Hu = max(Hv + 1, Hw)

else
Hu = max(Hw + 1, Hv)

u
v

w

u v
w



22 - 4

Computing right-heavy hv-layout in linear time

■ Compute in a bottom-up fashion (by a post-order traversal) su, Wu and Hu

u : su = sv + sw + 1

if (sv < sw)
Hu = max(Hv + 1, Hw)

else
Hu = max(Hw + 1, Hv)

u
v

w

u v
w

Wu = Wv + Ww + 1



23 - 1

Computing right-heavy hv-layout in linear time

■ Compute in a top-down fashion (by a pre-order traversal) xu and yu



23 - 2

Computing right-heavy hv-layout in linear time

■ Compute in a top-down fashion (by a pre-order traversal) xu and yu

r : xr = 0, yr = 0 r(0, 0)



23 - 3

Computing right-heavy hv-layout in linear time

■ Compute in a top-down fashion (by a pre-order traversal) xu and yu

r : xr = 0, yr = 0

For subtree rooted at v and placed below u:
xv = xu
yv = yu − 1

u
v

w

r(0, 0)

u :

For subtree rooted at w and placed to the right of u:
xw = xu + Wv + 1
yw = yu



23 - 4

Computing right-heavy hv-layout in linear time

■ Compute in a top-down fashion (by a pre-order traversal) xu and yu

r : xr = 0, yr = 0

For subtree rooted at v and placed below u:
xv = xu
yv = yu − 1

u
v

w

r(0, 0)

u :

For subtree rooted at w and placed to the right of u:
xw = xu + Wv + 1
yw = yu

Total time: O(n)



24 - 1

hv-drawing – result (1)

Theorem.
Let T be a binary tree with n vertices. The
right-heavy algorithm constructs in O(n) time a
drawing Γ of T s.t.:
■ Γ is hv-drawing (planar, orthogonal)
■ Width is at most n− 1
■ Height is at most log n
■ Area is in O(n log n)
■ Simply and axially isomorphic subtrees have

congruent drawings up to translation



24 - 2

hv-drawing – result (1)

Theorem.
Let T be a binary tree with n vertices. The
right-heavy algorithm constructs in O(n) time a
drawing Γ of T s.t.:
■ Γ is hv-drawing (planar, orthogonal)
■ Width is at most n− 1
■ Height is at most log n
■ Area is in O(n log n)
■ Simply and axially isomorphic subtrees have

congruent drawings up to translation



24 - 3

hv-drawing – result (1)

Theorem.
Let T be a binary tree with n vertices. The
right-heavy algorithm constructs in O(n) time a
drawing Γ of T s.t.:
■ Γ is hv-drawing (planar, orthogonal)
■ Width is at most n− 1
■ Height is at most log n
■ Area is in O(n log n)
■ Simply and axially isomorphic subtrees have

congruent drawings up to translation
Bad aspect ratio
Ω(n/ log n)



24 - 4

hv-drawing – result (1)

Theorem.
Let T be a binary tree with n vertices. The
right-heavy algorithm constructs in O(n) time a
drawing Γ of T s.t.:
■ Γ is hv-drawing (planar, orthogonal)
■ Width is at most n− 1
■ Height is at most log n
■ Area is in O(n log n)
■ Simply and axially isomorphic subtrees have

congruent drawings up to translation

General rooted tree
largest
sub-
tree



25 - 1

hv-drawing – balanced layout

Balanced approach
■ Recursively compute layout for left and right subtrees
■ Apply

■ horizontal combination if vertex is at odd depth
■ vertical combination if vertex is at even depth



25 - 2

hv-drawing – balanced layout

Balanced approach
■ Recursively compute layout for left and right subtrees
■ Apply

■ horizontal combination if vertex is at odd depth
■ vertical combination if vertex is at even depth

0

1

2

3

4



25 - 3

hv-drawing – balanced layout

Balanced approach
■ Recursively compute layout for left and right subtrees
■ Apply

■ horizontal combination if vertex is at odd depth
■ vertical combination if vertex is at even depth

0

1

2

3

4



25 - 4

hv-drawing – balanced layout

Balanced approach
■ Recursively compute layout for left and right subtrees
■ Apply

■ horizontal combination if vertex is at odd depth
■ vertical combination if vertex is at even depth

0

1

2

3

4



25 - 5

hv-drawing – balanced layout

Balanced approach
■ Recursively compute layout for left and right subtrees
■ Apply

■ horizontal combination if vertex is at odd depth
■ vertical combination if vertex is at even depth

0

1

2

3

4



25 - 6

hv-drawing – balanced layout

Balanced approach
■ Recursively compute layout for left and right subtrees
■ Apply

■ horizontal combination if vertex is at odd depth
■ vertical combination if vertex is at even depth

0

1

2

3

4



25 - 7

hv-drawing – balanced layout

Balanced approach
■ Recursively compute layout for left and right subtrees
■ Apply

■ horizontal combination if vertex is at odd depth
■ vertical combination if vertex is at even depth

0

1

2

3

4



25 - 8

hv-drawing – balanced layout

Balanced approach
■ Recursively compute layout for left and right subtrees
■ Apply

■ horizontal combination if vertex is at odd depth
■ vertical combination if vertex is at even depth

0

1

2

3

4



25 - 9

hv-drawing – balanced layout

Balanced approach
■ Recursively compute layout for left and right subtrees
■ Apply

■ horizontal combination if vertex is at odd depth
■ vertical combination if vertex is at even depth

0

1

2

3

4



25 - 10

hv-drawing – balanced layout

Balanced approach
■ Recursively compute layout for left and right subtrees
■ Apply

■ horizontal combination if vertex is at odd depth
■ vertical combination if vertex is at even depth

0

1

2

3

4



25 - 11

hv-drawing – balanced layout

Balanced approach
■ Recursively compute layout for left and right subtrees
■ Apply

■ horizontal combination if vertex is at odd depth
■ vertical combination if vertex is at even depth

0

1

2

3

4



25 - 12

hv-drawing – balanced layout

Balanced approach
■ Recursively compute layout for left and right subtrees
■ Apply

■ horizontal combination if vertex is at odd depth
■ vertical combination if vertex is at even depth

0

1

2

3

4



25 - 13

hv-drawing – balanced layout

Balanced approach
■ Recursively compute layout for left and right subtrees
■ Apply

■ horizontal combination if vertex is at odd depth
■ vertical combination if vertex is at even depth

0

1

2

3

4



25 - 14

hv-drawing – balanced layout

Balanced approach
■ Recursively compute layout for left and right subtrees
■ Apply

■ horizontal combination if vertex is at odd depth
■ vertical combination if vertex is at even depth

0

1

2

3

4



26 - 1

hv-drawing – balanced layout

Lemma. Let T be a binary tree. The drawing constructed
by balanced approach has
■ area O(n) and
■ constant aspect ratio



26 - 2

hv-drawing – balanced layout

Lemma. Let T be a binary tree. The drawing constructed
by balanced approach has
■ area O(n) and
■ constant aspect ratio

Base case: h = 0
W0 = 0, H0 = 0



26 - 3

hv-drawing – balanced layout

Lemma. Let T be a binary tree. The drawing constructed
by balanced approach has
■ area O(n) and
■ constant aspect ratio

Base case: h = 0
W0 = 0, H0 = 0

even height: h = 2k
Wh, Hh



26 - 4

hv-drawing – balanced layout

Lemma. Let T be a binary tree. The drawing constructed
by balanced approach has
■ area O(n) and
■ constant aspect ratio

Base case: h = 0
W0 = 0, H0 = 0

even height: h = 2k
Wh, Hh

■ compute Wh+1, Hh+1



26 - 5

hv-drawing – balanced layout

Lemma. Let T be a binary tree. The drawing constructed
by balanced approach has
■ area O(n) and
■ constant aspect ratio

Base case: h = 0
W0 = 0, H0 = 0

even height: h = 2k
Wh, Hh

■ compute Wh+1, Hh+1

Wh

Wh

Hh

Hh



26 - 6

hv-drawing – balanced layout

Lemma. Let T be a binary tree. The drawing constructed
by balanced approach has
■ area O(n) and
■ constant aspect ratio

Base case: h = 0
W0 = 0, H0 = 0

even height: h = 2k
Wh, Hh

Wh+1 = 2Wh + 1
Hh+1 = Hh + 1

■ compute Wh+1, Hh+1

Wh

Wh

Hh

Hh



26 - 7

hv-drawing – balanced layout

Lemma. Let T be a binary tree. The drawing constructed
by balanced approach has
■ area O(n) and
■ constant aspect ratio

Base case: h = 0
W0 = 0, H0 = 0

even height: h = 2k
Wh, Hh

Wh+1 = 2Wh + 1
Hh+1 = Hh + 1

■ compute Wh+1, Hh+1

Wh

Wh

Hh

Hh

■ compute Wh+2, Hh+2

Wh+1

Hh+1

Wh+1

Hh+1



26 - 8

hv-drawing – balanced layout

Lemma. Let T be a binary tree. The drawing constructed
by balanced approach has
■ area O(n) and
■ constant aspect ratio

Base case: h = 0
W0 = 0, H0 = 0

even height: h = 2k
Wh, Hh

Wh+1 = 2Wh + 1
Hh+1 = Hh + 1

■ compute Wh+1, Hh+1

Wh

Wh

Hh

Hh

■ compute Wh+2, Hh+2

Wh+2 = Wh+1 + 1
Hh+2 = 2Hh+1 + 1

Wh+1

Hh+1

Wh+1

Hh+1



26 - 9

hv-drawing – balanced layout

Lemma. Let T be a binary tree. The drawing constructed
by balanced approach has
■ area O(n) and
■ constant aspect ratio

Base case: h = 0
W0 = 0, H0 = 0

even height: h = 2k
Wh, Hh

Wh+2 = 2Wh + 2
Hh+2 = 2Hh + 3



26 - 10

hv-drawing – balanced layout

Lemma. Let T be a binary tree. The drawing constructed
by balanced approach has
■ area O(n) and
■ constant aspect ratio

Base case: h = 0
W0 = 0, H0 = 0

even height: h = 2k
Wh, Hh

Wh+2 = 2Wh + 2
Hh+2 = 2Hh + 3

Wh = 2(2h/2 − 1)
Hh = 3(2h/2 − 1)

Wh = 2
√

n− 2
Hh = 3

√
n− 3



26 - 11

hv-drawing – balanced layout

Lemma. Let T be a binary tree. The drawing constructed
by balanced approach has
■ area O(n) and
■ constant aspect ratio

Base case: h = 0
W0 = 0, H0 = 0

even height: h = 2k
Wh, Hh

Wh+2 = 2Wh + 2
Hh+2 = 2Hh + 3

Wh = 2(2h/2 − 1)
Hh = 3(2h/2 − 1)

Wh = 2
√

n− 2
Hh = 3

√
n− 3

odd height: h = 2k + 1
Wh, Hh

Wh+2 = 2Wh + 3
Hh+2 = 2Hh + 2

Wh = 2
√
2n− 3

Hh = 3
2

√
2n− 2

Base case: h = 1
W1 = 1, H1 = 1



27 - 1

hv-drawing – result (2)

Theorem.
Let T be a binary tree with n vertices. The balanced
algorithm constructs in O(n) time a drawing Γ of T
s.t.:
■ Γ is hv-drawing (planar, orthogonal)
■ Width/Height is at most 2
■ Area is in O(n)
■ Isomorphic subtrees have congruent drawings up to

translation only if the roots are both on odd or
both on even depth.



27 - 2

hv-drawing – result (2)

Theorem.
Let T be a binary tree with n vertices. The balanced
algorithm constructs in O(n) time a drawing Γ of T
s.t.:
■ Γ is hv-drawing (planar, orthogonal)
■ Width/Height is at most 2
■ Area is in O(n)
■ Isomorphic subtrees have congruent drawings up to

translation only if the roots are both on odd or
both on even depth.



27 - 3

hv-drawing – result (2)

Theorem.
Let T be a binary tree with n vertices. The balanced
algorithm constructs in O(n) time a drawing Γ of T
s.t.:
■ Γ is hv-drawing (planar, orthogonal)
■ Width/Height is at most 2
■ Area is in O(n)
■ Isomorphic subtrees have congruent drawings up to

translation only if the roots are both on odd or
both on even depth.

Optimal area?
■ Not with divide & conquer approach, but
■ can be computed with Dynamic Programming.



28

Optimum hv-layout for binary trees

■ Possible arrangements:

u w u v

w

(1)

(2)

(3)

(4)

(5) (6)

w to the right of u v to the right of u

u has only one child

u
v w

v

u
v

w u v
w

u v u
v



29 - 1

Optimum hv-layout for binary trees

Algorithm Optimum hv-layout
Input: Vertex v
Output: A list with all possible hv-layouts for Tv

If h(Tv) == 0). –v is the only vertex in the tree
return trivial single vertex hv-layout

else
1. Build lists L1 and L2 of all possible hv-layouts of TL

u and TR
u , resp.

2. Combine L1 and L2 (by applying all possible arrangements) to build list L of
all possible hv-layouts for Tv

3. return L



29 - 2

Optimum hv-layout for binary trees

Algorithm Optimum hv-layout
Input: Vertex v
Output: A list with all possible hv-layouts for Tv

If h(Tv) == 0). –v is the only vertex in the tree
return trivial single vertex hv-layout

else
1. Build lists L1 and L2 of all possible hv-layouts of TL

u and TR
u , resp.

2. Combine L1 and L2 (by applying all possible arrangements) to build list L of
all possible hv-layouts for Tv

3. return L

■ From the list at the root of the tree, select the optimum hv-layout.
Optimum w.r.t.: area, perimeter, height, width, ...



30 - 1

Optimum hv-layout for binary trees

Obervation 1: The number of possible hv-layouts is exponential



30 - 2

Optimum hv-layout for binary trees

Obervation 1: The number of possible hv-layouts is exponential

Obervation 2: The number of possible enclosing rectangles is at most n2

[n possible different heights and n possible different widths]

0 ≤ h < n

0 ≤ w < n



30 - 3

Optimum hv-layout for binary trees

Obervation 1: The number of possible hv-layouts is exponential

Obervation 2: The number of possible enclosing rectangles is at most n2

[n possible different heights and n possible different widths]

Obervation 3: We only need to keep the enclosing rectangles that are not fully
covered by other enclosing rectangles. We refer to them as atoms.

R1

R2
R2 ⊂ R1

{
w2 ≤ w1 and
h2 ≤ h1



30 - 4

Optimum hv-layout for binary trees

Obervation 1: The number of possible hv-layouts is exponential

Obervation 2: The number of possible enclosing rectangles is at most n2

[n possible different heights and n possible different widths]

Obervation 3: We only need to keep the enclosing rectangles that are not fully
covered by other enclosing rectangles. We refer to them as atoms.

Lemma: For an n-vertex binary tree we have at most n− 1 atoms.



30 - 5

Optimum hv-layout for binary trees

Obervation 1: The number of possible hv-layouts is exponential

Obervation 2: The number of possible enclosing rectangles is at most n2

[n possible different heights and n possible different widths]

Obervation 3: We only need to keep the enclosing rectangles that are not fully
covered by other enclosing rectangles. We refer to them as atoms.

Lemma: For an n-vertex binary tree we have at most n− 1 atoms.

Proof: Observe that:
■ Let each atom be of the form [w× h].
■ There is only one atom for each w, 0 ≤ w ≤ n− 1.



31 - 1

Optimum hv-layout for binary trees

Time Analysis:

1. Simple implementation:

■ Combining the n2 rectangles in each of L1 and L2 to get a list of n4 rectangles.
⇒ O(n4) time

■ Remove duplicate rectangles ⇒ O(n4) time
■ Repeat for each internal tree node ⇒ O(n · n4) = O(n5) total time



31 - 2

Optimum hv-layout for binary trees

Time Analysis:

1. Simple implementation:

■ Combining the n2 rectangles in each of L1 and L2 to get a list of n4 rectangles.
⇒ O(n4) time

■ Remove duplicate rectangles ⇒ O(n4) time
■ Repeat for each internal tree node ⇒ O(n · n4) = O(n5) total time

2. Implementation based on “atom-only” lists [Observation-3]

■ Combine the n atoms in each of L1 and L2 and remove duplicates ⇒ O(n2) time
■ Repeat for each internal tree node ⇒ O(n · n2) = O(n3) total time



31 - 3

Optimum hv-layout for binary trees

Time Analysis:

1. Simple implementation:

■ Combining the n2 rectangles in each of L1 and L2 to get a list of n4 rectangles.
⇒ O(n4) time

■ Remove duplicate rectangles ⇒ O(n4) time
■ Repeat for each internal tree node ⇒ O(n · n4) = O(n5) total time

2. Implementation based on “atom-only” lists [Observation-3]

■ Combine the n atoms in each of L1 and L2 and remove duplicates ⇒ O(n2) time
■ Repeat for each internal tree node ⇒ O(n · n2) = O(n3) total time

3. Fast “atom-based” implementation

■ Combine the n atoms in each of L1 and L2 and remove duplicates by a “merge-like”
operation ⇒ O(n) time

■ Repeat for each internal tree node ⇒ O(n · n) = O(n2) total time



32 - 1

Optimum hv-layout for binary trees

Time Analysis:

2. Implementation based on “atom-only” lists [Observation-3]

■ Combine the n atoms in each of L1 and L2 and remove duplicates ⇒ O(n2) time
■ Repeat for each internal tree node ⇒ O(n · n2) = O(n3) total time



32 - 2

Optimum hv-layout for binary trees

Time Analysis:

2. Implementation based on “atom-only” lists [Observation-3]

■ Combine the n atoms in each of L1 and L2 and remove duplicates ⇒ O(n2) time
■ Repeat for each internal tree node ⇒ O(n · n2) = O(n3) total time

atoms: array of length n
atoms[i] = atom with length i

■ for each combination of L1 and L2 update array of atoms



32 - 3

Optimum hv-layout for binary trees

Time Analysis:

2. Implementation based on “atom-only” lists [Observation-3]

■ Combine the n atoms in each of L1 and L2 and remove duplicates ⇒ O(n2) time
■ Repeat for each internal tree node ⇒ O(n · n2) = O(n3) total time

atoms: array of length n
atoms[i] = atom with length i

■ for each combination of L1 and L2 update array of atoms

Obervation: width is increasing wi < wj
height is decreasing hi > hj



33 - 1

Optimum hv-layout for binary trees

Time Analysis:
3. Fast “atom-based” implementation

■ Combine the n atoms in each of L1 and L2 and remove duplicates by a “merge-like”
operation ⇒ O(n) time

■ Repeat for each internal tree node ⇒ O(n · n) = O(n2) total time



33 - 2

Optimum hv-layout for binary trees

Time Analysis:
3. Fast “atom-based” implementation

■ Combine the n atoms in each of L1 and L2 and remove duplicates by a “merge-like”
operation ⇒ O(n) time

■ Repeat for each internal tree node ⇒ O(n · n) = O(n2) total time

aL: {p0, . . . , pk}, pi = (wi, hi)
aR: {q0, . . . , qℓ}, qj = (w′j, h′j)

u
uL

uR



33 - 3

Optimum hv-layout for binary trees

Time Analysis:
3. Fast “atom-based” implementation

■ Combine the n atoms in each of L1 and L2 and remove duplicates by a “merge-like”
operation ⇒ O(n) time

■ Repeat for each internal tree node ⇒ O(n · n) = O(n2) total time

aL: {p0, . . . , pk}, pi = (wi, hi)
aR: {q0, . . . , qℓ}, qj = (w′j, h′j)

u
uL

uR

combination c(pi, qj):

■ W = wi + w′j + 1

■ H = max{hi + 1, h′j}



33 - 4

Optimum hv-layout for binary trees

Time Analysis:
3. Fast “atom-based” implementation

■ Combine the n atoms in each of L1 and L2 and remove duplicates by a “merge-like”
operation ⇒ O(n) time

■ Repeat for each internal tree node ⇒ O(n · n) = O(n2) total time

aL: {p0, . . . , pk}, pi = (wi, hi)
aR: {q0, . . . , qℓ}, qj = (w′j, h′j)

u
uL

uR

combination c(pi, qj):

■ W = wi + w′j + 1

■ H = max{hi + 1, h′j}

For fixed pi = (wi, hi)

■ W is increasing

■ H =

{
h′j, for h′j > hi + 1

hi, for h′j ≤ hi + 1



33 - 5

Optimum hv-layout for binary trees

Time Analysis:
3. Fast “atom-based” implementation

■ Combine the n atoms in each of L1 and L2 and remove duplicates by a “merge-like”
operation ⇒ O(n) time

■ Repeat for each internal tree node ⇒ O(n · n) = O(n2) total time

aL: {p0, . . . , pk}, pi = (wi, hi)
aR: {q0, . . . , qℓ}, qj = (w′j, h′j)

u
uL

uR

combination c(pi, qj):

■ W = wi + w′j + 1

■ H = max{hi + 1, h′j}

For fixed pi = (wi, hi)

■ W is increasing

■ H =

{
h′j, for h′j > hi + 1

hi, for h′j ≤ hi + 1

enclosed !!



33 - 6

Optimum hv-layout for binary trees

Time Analysis:
3. Fast “atom-based” implementation

■ Combine the n atoms in each of L1 and L2 and remove duplicates by a “merge-like”
operation ⇒ O(n) time

■ Repeat for each internal tree node ⇒ O(n · n) = O(n2) total time

aL: {p0, . . . , pk}, pi = (wi, hi)
aR: {q0, . . . , qℓ}, qj = (w′j, h′j)

u
uL

uR

combination c(pi, qj):

■ W = wi + w′j + 1

■ H = max{hi + 1, h′j}

For fixed pi = (wi, hi)

■ There exists smallest j(i) s.t. h′j(i) ≤ hi + 1

■ atoms defined only for j ≤ j(i)

■ j(i) is increasing

■ c(pi′>i, qj) enclosed by c(pi, qj) for j ≤ j(i)



34 - 1

Optimum hv-layout for binary trees

Time Analysis:
3. Fast “atom-based” implementation

■ Combine the n atoms in each of L1 and L2 and remove duplicates by a “merge-like”
operation ⇒ O(n) time

■ Repeat for each internal tree node ⇒ O(n · n) = O(n2) total time



34 - 2

Optimum hv-layout for binary trees

Time Analysis:
3. Fast “atom-based” implementation

■ Combine the n atoms in each of L1 and L2 and remove duplicates by a “merge-like”
operation ⇒ O(n) time

■ Repeat for each internal tree node ⇒ O(n · n) = O(n2) total time

0

1

i

i + 1

j(0) j(1) j(i) j(i + 1)0



34 - 3

Optimum hv-layout for binary trees

Time Analysis:
3. Fast “atom-based” implementation

■ Combine the n atoms in each of L1 and L2 and remove duplicates by a “merge-like”
operation ⇒ O(n) time

■ Repeat for each internal tree node ⇒ O(n · n) = O(n2) total time

0

1

i

i + 1

j(0) j(1) j(i) j(i + 1)0

enclosed by c(p0, qj(0))



34 - 4

Optimum hv-layout for binary trees

Time Analysis:
3. Fast “atom-based” implementation

■ Combine the n atoms in each of L1 and L2 and remove duplicates by a “merge-like”
operation ⇒ O(n) time

■ Repeat for each internal tree node ⇒ O(n · n) = O(n2) total time

0

1

i

i + 1

j(0) j(1) j(i) j(i + 1)0

enclosed by c(p1, qj(1))enclosed by c(p0, qj)



34 - 5

Optimum hv-layout for binary trees

Time Analysis:
3. Fast “atom-based” implementation

■ Combine the n atoms in each of L1 and L2 and remove duplicates by a “merge-like”
operation ⇒ O(n) time

■ Repeat for each internal tree node ⇒ O(n · n) = O(n2) total time

0

1

i

i + 1

j(0) j(1) j(i) j(i + 1)0

enclosed by c(pi, qj(i))enclosed by c(pi−1, qj)



34 - 6

Optimum hv-layout for binary trees

Time Analysis:
3. Fast “atom-based” implementation

■ Combine the n atoms in each of L1 and L2 and remove duplicates by a “merge-like”
operation ⇒ O(n) time

■ Repeat for each internal tree node ⇒ O(n · n) = O(n2) total time

0

1

i

i + 1

j(0) j(1) j(i) j(i + 1)0

enclosed by c(pi+1, qj(i+1))enclosed by c(pi, qj)



34 - 7

Optimum hv-layout for binary trees

Time Analysis:
3. Fast “atom-based” implementation

■ Combine the n atoms in each of L1 and L2 and remove duplicates by a “merge-like”
operation ⇒ O(n) time

■ Repeat for each internal tree node ⇒ O(n · n) = O(n2) total time

0

1

i

i + 1

j(0) j(1) j(i) j(i + 1)0



34 - 8

Optimum hv-layout for binary trees

Time Analysis:
3. Fast “atom-based” implementation

■ Combine the n atoms in each of L1 and L2 and remove duplicates by a “merge-like”
operation ⇒ O(n) time

■ Repeat for each internal tree node ⇒ O(n · n) = O(n2) total time

combine1(atoms aL, atoms aR)

i← 0
j← 0
while i ≤ k and j ≤ ℓ do

compute combination
if h′j > hi + 1 then

j← j + 1

else
i← i + 1



35 - 1

Radial layout – applications

Phylogenetic tree
by Colicelli, ScienceSignaling, 2004



35 - 2

Radial layout – applications

Flare Visualization Toolkit code structure
by Heer, Bostock and Ogievetsky, 2010

Greek Myth Family
by Ribecca, 2011



36 - 1

Radial layout – drawing style

Drawing conventions
■ Vertices lie on circular layers

according to their depth
■ Drawing is planar

Drawing aesthetics
■ Distribution of the vertices



36 - 2

Radial layout – drawing style

Drawing conventions
■ Vertices lie on circular layers

according to their depth
■ Drawing is planar

Drawing aesthetics
■ Distribution of the vertices

How may an algorithm optimise
the distribution of the vertices?



37 - 1

Radial layout – algorithm attempt

1
9

1
1

1
1 1

3
5

7

11

Idea
■ Angle corresponding to size ℓ(u) of T(u):

τu =
ℓ(u)

ℓ(v)− 1
τv

v
u

ℓ(u)



37 - 2

Radial layout – algorithm attempt

1
9

1
1

1
1 1

3
5

7

11

Idea
■ Angle corresponding to size ℓ(u) of T(u):

τu =
ℓ(u)

ℓ(v)− 1
τv

v
u

ℓ(u)



37 - 3

Radial layout – algorithm attempt

1
9

1
1

1
1 1

3
5

7

11
1
10

Idea
■ Angle corresponding to size ℓ(u) of T(u):

τu =
ℓ(u)

ℓ(v)− 1
τv

v
u

ℓ(u)



37 - 4

Radial layout – algorithm attempt

1
9

1
1

1
1 1

3
5

7

11
1
10

Idea
■ Angle corresponding to size ℓ(u) of T(u):

τu =
ℓ(u)

ℓ(v)− 1
τv

v
u

ℓ(u)



37 - 5

Radial layout – algorithm attempt

1
9

1
1

1
1 1

3
5

7

11
1
10

9
10 ·

1
8

Idea
■ Angle corresponding to size ℓ(u) of T(u):

τu =
ℓ(u)

ℓ(v)− 1
τv

v
u

ℓ(u)



37 - 6

Radial layout – algorithm attempt

1
9

1
1

1
1 1

3
5

7

11
1
10

9
10 ·

1
8

Idea
■ Angle corresponding to size ℓ(u) of T(u):

τu =
ℓ(u)

ℓ(v)− 1
τv

v
u

ℓ(u)



37 - 7

Radial layout – algorithm attempt

1
9

1
1

1
1 1

3
5

7

11
1
10

9
10 ·

1
8

9
10 ·

7
8 ·

1
6

Idea
■ Angle corresponding to size ℓ(u) of T(u):

τu =
ℓ(u)

ℓ(v)− 1
τv

v
u

ℓ(u)



37 - 8

Radial layout – algorithm attempt

1
9

1
1

1
1 1

3
5

7

11
1
10

9
10 ·

1
8

9
10 ·

7
8 ·

1
6

Idea
■ Angle corresponding to size ℓ(u) of T(u):

τu =
ℓ(u)

ℓ(v)− 1
τv

v
u

ℓ(u)



38 - 1

Radial layout – how to avoid crossings

v

u

p

q



38 - 2

Radial layout – how to avoid crossings

v

u

p

q



38 - 3

Radial layout – how to avoid crossings

v

u

p

q



38 - 4

Radial layout – how to avoid crossings

v

u
q

p



38 - 5

Radial layout – how to avoid crossings

τu

v

u

■ τu – angle of the wedge
corresponding to vertex u

q

p



38 - 6

Radial layout – how to avoid crossings

ρi τu
2

v

u

■ τu – angle of the wedge
corresponding to vertex u

■ ρi – raduis of layer i

■ cos τu
2 = ρi

ρi+1

■ ℓ(u) – number of nodes in
the subtree rooted at u

q

p ρi+1



38 - 7

Radial layout – how to avoid crossings

ρi τu
2

v

u

■ τu – angle of the wedge
corresponding to vertex u

■ ρi – raduis of layer i

■ cos τu
2 = ρi

ρi+1

■ τu = min{ ℓ(u)
ℓ(v)−1τv, 2 arccos

ρi
ρi+1
}

■ ℓ(u) – number of nodes in
the subtree rooted at u

q

p ρi+1



38 - 8

Radial layout – how to avoid crossings

ρi τu
2

v

u

■ τu – angle of the wedge
corresponding to vertex u

■ ρi – raduis of layer i

■ cos τu
2 = ρi

ρi+1

■ τu = min{ ℓ(u)
ℓ(v)−1τv, 2 arccos

ρi
ρi+1
}

■ ℓ(u) – number of nodes in
the subtree rooted at u

q

p

■ Alternative:

ρi+1

αu

αmax

αmin

αmin = αu − τu
2 ≥ αu − arccos

ρi
ρi+1

αmax = αu +
τu
2 ≤ αu + arccos

ρi
ρi+1



39 - 1

Radial layout – pseudocode

RadialTreeLayout(tree T, root r ∈ T, radii ρ1 < · · · < ρk)

begin
postorder(r)
preorder(r, 0, 0, 2π)
return (dv, αv)v∈V(T)
// vertex pos./polar coord.

postorder(vertex v)
ℓ(v)← 1
foreach child w of v do

postorder(w)
ℓ(v)← ℓ(v) + ℓ(w)

calculate the size of the
subtree recursively



39 - 2

Radial layout – pseudocode

RadialTreeLayout(tree T, root r ∈ T, radii ρ1 < · · · < ρk)

begin
postorder(r)
preorder(r, 0, 0, 2π)
return (dv, αv)v∈V(T)
// vertex pos./polar coord.

postorder(vertex v)
ℓ(v)← 1
foreach child w of v do

postorder(w)
ℓ(v)← ℓ(v) + ℓ(w)



39 - 3

Radial layout – pseudocode

RadialTreeLayout(tree T, root r ∈ T, radii ρ1 < · · · < ρk)

begin
postorder(r)
preorder(r, 0, 0, 2π)
return (dv, αv)v∈V(T)
// vertex pos./polar coord.

postorder(vertex v)
ℓ(v)← 1
foreach child w of v do

postorder(w)
ℓ(v)← ℓ(v) + ℓ(w)

Determine wedge for u



39 - 4

Radial layout – pseudocode

RadialTreeLayout(tree T, root r ∈ T, radii ρ1 < · · · < ρk)

begin
postorder(r)
preorder(r, 0, 0, 2π)
return (dv, αv)v∈V(T)
// vertex pos./polar coord.

postorder(vertex v)
ℓ(v)← 1
foreach child w of v do

postorder(w)
ℓ(v)← ℓ(v) + ℓ(w)

ρi τu
2

u
ρi+1

αu

αmax

αmin

Determine wedge for u



39 - 5

Radial layout – pseudocode

RadialTreeLayout(tree T, root r ∈ T, radii ρ1 < · · · < ρk)

begin
postorder(r)
preorder(r, 0, 0, 2π)
return (dv, αv)v∈V(T)
// vertex pos./polar coord.

postorder(vertex v)
ℓ(v)← 1
foreach child w of v do

postorder(w)
ℓ(v)← ℓ(v) + ℓ(w)

ρi τu
2

u
ρi+1

αu

αmax

αmin

Determine wedge for u



39 - 6

Radial layout – pseudocode

RadialTreeLayout(tree T, root r ∈ T, radii ρ1 < · · · < ρk)

begin
postorder(r)
preorder(r, 0, 0, 2π)
return (dv, αv)v∈V(T)
// vertex pos./polar coord.

postorder(vertex v)
ℓ(v)← 1
foreach child w of v do

postorder(w)
ℓ(v)← ℓ(v) + ℓ(w) u

w′
wleft

right
left′

right′

Determine wedge for u
Determine αmin-αmax

for children of u



39 - 7

Radial layout – pseudocode

RadialTreeLayout(tree T, root r ∈ T, radii ρ1 < · · · < ρk)

begin
postorder(r)
preorder(r, 0, 0, 2π)
return (dv, αv)v∈V(T)
// vertex pos./polar coord.

postorder(vertex v)
ℓ(v)← 1
foreach child w of v do

postorder(w)
ℓ(v)← ℓ(v) + ℓ(w)

preorder(vertex v, t, αmin, αmax)

dv ← ρt
αv ← (αmin + αmax)/2
if t > 0 then

αmin←max{αmin, αv−arccos ρt
ρt+1
}

αmax←min{αmax, αv+arccos
ρt

ρt+1
}

left← αmin

foreach child w of v do

right← left + ℓ(w)
ℓ(v)−1 ·(αmax − αmin)

preorder(w, t + 1, left, right)
left← right



39 - 8

Radial layout – pseudocode

RadialTreeLayout(tree T, root r ∈ T, radii ρ1 < · · · < ρk)

begin
postorder(r)
preorder(r, 0, 0, 2π)
return (dv, αv)v∈V(T)
// vertex pos./polar coord.

postorder(vertex v)
ℓ(v)← 1
foreach child w of v do

postorder(w)
ℓ(v)← ℓ(v) + ℓ(w)

preorder(vertex v, t, αmin, αmax)

dv ← ρt
αv ← (αmin + αmax)/2
if t > 0 then

αmin←max{αmin, αv−arccos ρt
ρt+1
}

αmax←min{αmax, αv+arccos
ρt

ρt+1
}

left← αmin

foreach child w of v do

right← left + ℓ(w)
ℓ(v)−1 ·(αmax − αmin)

preorder(w, t + 1, left, right)
left← right



39 - 9

Radial layout – pseudocode

RadialTreeLayout(tree T, root r ∈ T, radii ρ1 < · · · < ρk)

begin
postorder(r)
preorder(r, 0, 0, 2π)
return (dv, αv)v∈V(T)
// vertex pos./polar coord.

postorder(vertex v)
ℓ(v)← 1
foreach child w of v do

postorder(w)
ℓ(v)← ℓ(v) + ℓ(w)

preorder(vertex v, t, αmin, αmax)

dv ← ρt
αv ← (αmin + αmax)/2
if t > 0 then

αmin←max{αmin, αv−arccos ρt
ρt+1
}

αmax←min{αmax, αv+arccos
ρt

ρt+1
}

left← αmin

foreach child w of v do

right← left + ℓ(w)
ℓ(v)−1 ·(αmax − αmin)

preorder(w, t + 1, left, right)
left← right

//output



39 - 10

Radial layout – pseudocode

RadialTreeLayout(tree T, root r ∈ T, radii ρ1 < · · · < ρk)

begin
postorder(r)
preorder(r, 0, 0, 2π)
return (dv, αv)v∈V(T)
// vertex pos./polar coord.

postorder(vertex v)
ℓ(v)← 1
foreach child w of v do

postorder(w)
ℓ(v)← ℓ(v) + ℓ(w)

preorder(vertex v, t, αmin, αmax)

dv ← ρt
αv ← (αmin + αmax)/2
if t > 0 then

αmin←max{αmin, αv−arccos ρt
ρt+1
}

αmax←min{αmax, αv+arccos
ρt

ρt+1
}

left← αmin

foreach child w of v do

right← left + ℓ(w)
ℓ(v)−1 ·(αmax − αmin)

preorder(w, t + 1, left, right)
left← right

//output

Runtime?



39 - 11

Radial layout – pseudocode

RadialTreeLayout(tree T, root r ∈ T, radii ρ1 < · · · < ρk)

begin
postorder(r)
preorder(r, 0, 0, 2π)
return (dv, αv)v∈V(T)
// vertex pos./polar coord.

postorder(vertex v)
ℓ(v)← 1
foreach child w of v do

postorder(w)
ℓ(v)← ℓ(v) + ℓ(w)

preorder(vertex v, t, αmin, αmax)

dv ← ρt
αv ← (αmin + αmax)/2
if t > 0 then

αmin←max{αmin, αv−arccos ρt
ρt+1
}

αmax←min{αmax, αv+arccos
ρt

ρt+1
}

left← αmin

foreach child w of v do

right← left + ℓ(w)
ℓ(v)−1 ·(αmax − αmin)

preorder(w, t + 1, left, right)
left← right

//output

Runtime? O(n)



39 - 12

Radial layout – pseudocode

RadialTreeLayout(tree T, root r ∈ T, radii ρ1 < · · · < ρk)

begin
postorder(r)
preorder(r, 0, 0, 2π)
return (dv, αv)v∈V(T)
// vertex pos./polar coord.

postorder(vertex v)
ℓ(v)← 1
foreach child w of v do

postorder(w)
ℓ(v)← ℓ(v) + ℓ(w)

preorder(vertex v, t, αmin, αmax)

dv ← ρt
αv ← (αmin + αmax)/2
if t > 0 then

αmin←max{αmin, αv−arccos ρt
ρt+1
}

αmax←min{αmax, αv+arccos
ρt

ρt+1
}

left← αmin

foreach child w of v do

right← left + ℓ(w)
ℓ(v)−1 ·(αmax − αmin)

preorder(w, t + 1, left, right)
left← right

//output

Runtime? O(n)
Correctness?



39 - 13

Radial layout – pseudocode

RadialTreeLayout(tree T, root r ∈ T, radii ρ1 < · · · < ρk)

begin
postorder(r)
preorder(r, 0, 0, 2π)
return (dv, αv)v∈V(T)
// vertex pos./polar coord.

postorder(vertex v)
ℓ(v)← 1
foreach child w of v do

postorder(w)
ℓ(v)← ℓ(v) + ℓ(w)

preorder(vertex v, t, αmin, αmax)

dv ← ρt
αv ← (αmin + αmax)/2
if t > 0 then

αmin←max{αmin, αv−arccos ρt
ρt+1
}

αmax←min{αmax, αv+arccos
ρt

ρt+1
}

left← αmin

foreach child w of v do

right← left + ℓ(w)
ℓ(v)−1 ·(αmax − αmin)

preorder(w, t + 1, left, right)
left← right

//output

Runtime? O(n)
Correctness? ✓



40

Radial layout – result

Theorem.
Let T be a tree with n vertices. The RadialTreeLayout
algorithm constructs in O(n) time a drawing Γ of T
s.t.:
■ Γ is radial drawing
■ Vertices lie on circle according to their depth
■ Area quadratic in max degree times height of T

(see book if interested)



41 - 1

Other tree visualisation styles

Writing Without Words:
The project explores methods
to visualises the differences in
writing styles of different
authors.

Similar to ballon layout



41 - 2

Other tree visualisation styles

A phylogenetically organised
display of data for all
placental mammal species.

Fractal layout



41 - 3

Other tree visualisation styles



41 - 4

Other tree visualisation styles

treevis.net



42

Literature

■ [GD Ch. 3.1] for divide and conquer methods for rooted trees

■ [RT81] Reingold and Tilford, ”Tidier Drawings of Trees”1981 – original paper for
level-based layout algo

■ [SR83] Reingold and Supowit, ”The complexity of drawing trees nicely”1983 –
NP-hardness proof for area minimisation & LP

■ treevis.net – compendium of drawing methods for trees
(links on website)


	Trees
	Level-based layout
	Applications
	Drawing style
	Algorithm
	Algorithm
	Algorithm
	Algorithm
	Result
	Area

	hv-drawings
	Applications & drawing style
	Algorithm
	Righy-heavy approach
	Result
	Balanced approach
	Result
	Optimum layout
	Result

	Radial layout
	Applications
	Drawing style
	Algorithm attempt
	Better algorithm
	Pseudocode
	Result

	Other tree visualisation styles
	Literature

