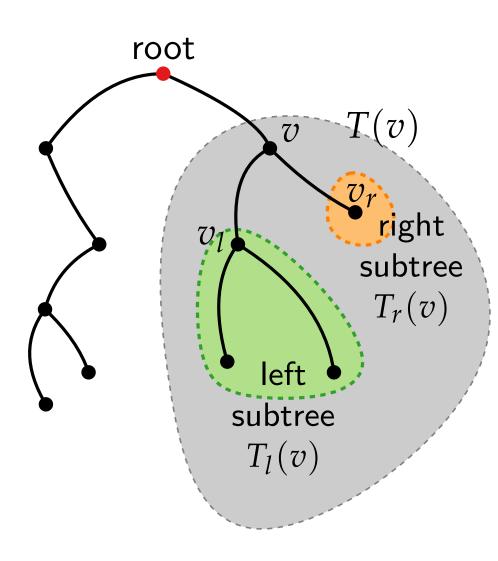
Visualisation of graphs

Drawing trees and series-parallel graphs

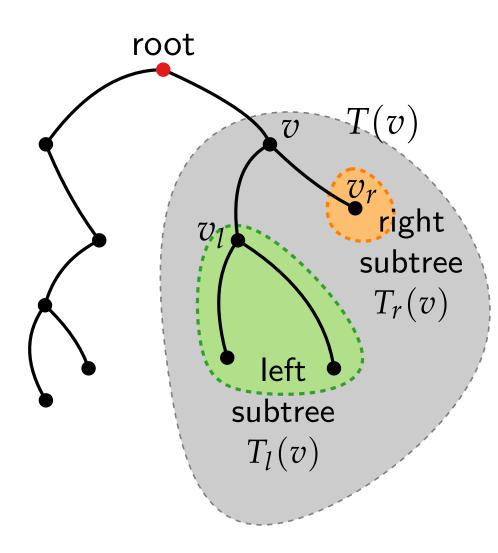
Divide and conquer methods

The original slides of this presentation were created by researchers at Karlsruhe Institute of Technology (KIT), TU Wien, U Wuerzburg, U Konstanz, ... The original presentation was modified/updated by A. Symvonis and C. Raftopoulou

- Tree connected graph without cycles
- here: binary and rooted



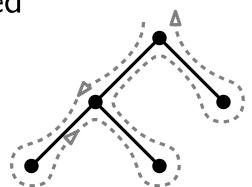
- Tree connected graph without cycles
- here: binary and rooted

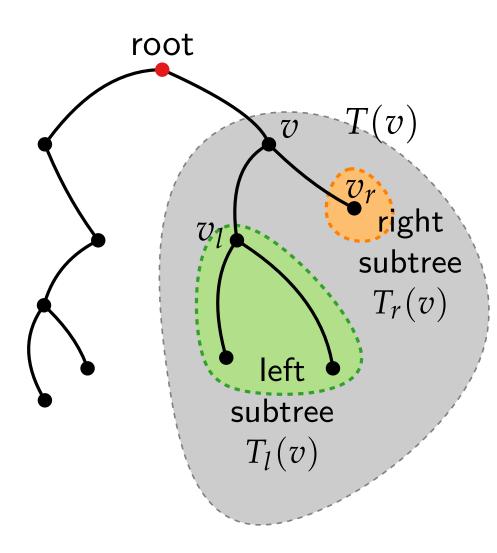


- Tree connected graph without cycles
- here: binary and rooted

Tree traversal

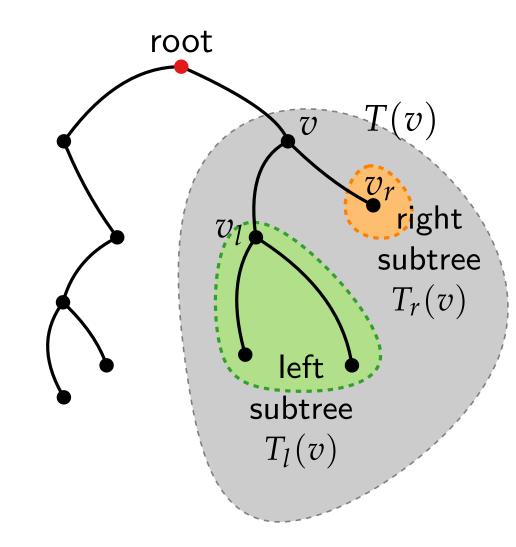
Depth-first search





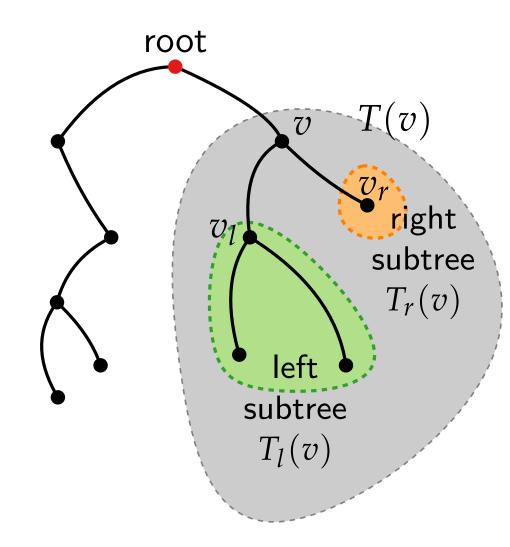
- Tree connected graph without cycles
- here: binary and rooted

- Depth-first search
 - Pre-order first parent, then subtrees



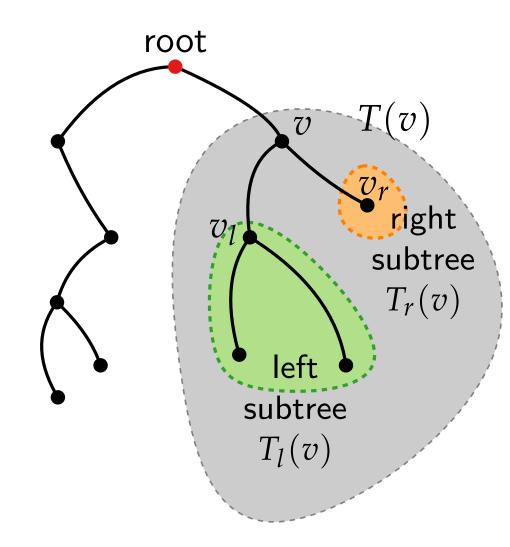
- Tree connected graph without cycles
- here: binary and rooted

- Depth-first search
 - Pre-order first parent, then subtrees
 - In-order left child, parent, right child



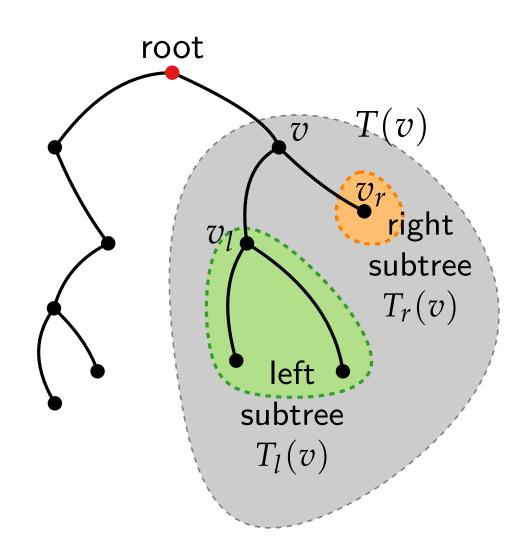
- Tree connected graph without cycles
- here: binary and rooted

- Depth-first search
 - Pre-order first parent, then subtrees
 - In-order left child, parent, right child
 - Post-order first subtrees, then parent



- Tree connected graph without cycles
- here: binary and rooted

- Depth-first search
 - Pre-order first parent, then subtrees
 - In-order left child, parent, right child
 - Post-order first subtrees, then parent
- Breadth-first search
 - Assignes vertices to levels corresponding to depth



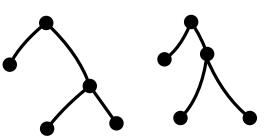
- Tree connected graph without cycles
- here: binary and rooted

Tree traversal

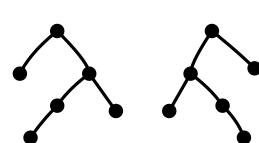
- Depth-first search
 - Pre-order first parent, then subtrees
 - In-order left child, parent, right child
 - Post-order first subtrees, then parent
- Breadth-first search
 - Assignes vertices to levels corresponding to depth

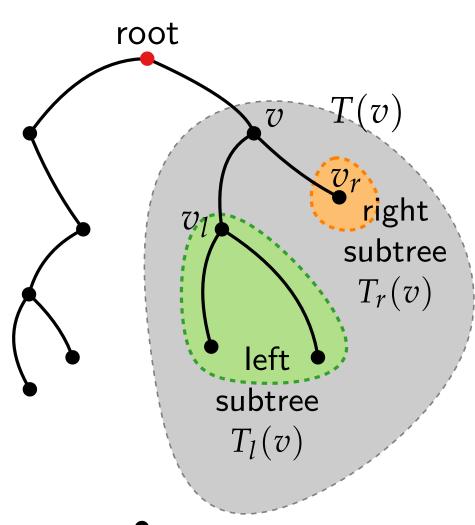
Isomporphism

simple

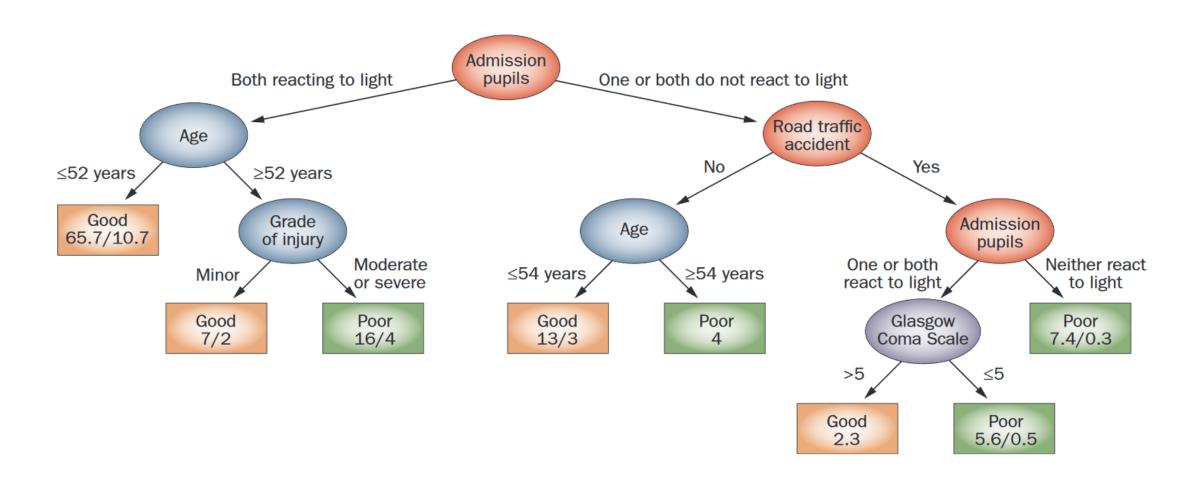


axial





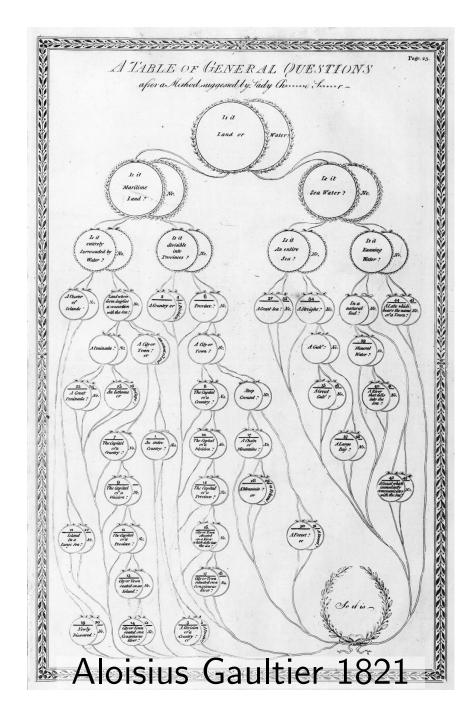
Level-based layout – applications

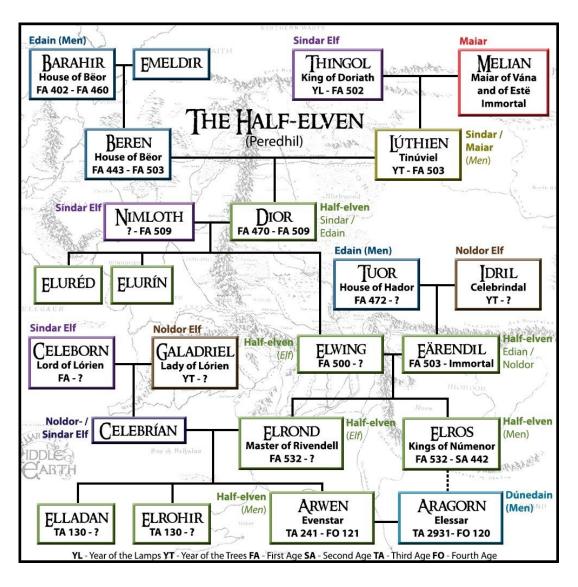


Decision tree for outcome prediction after traumatic brain injury

Source: Nature Reviews Neurology

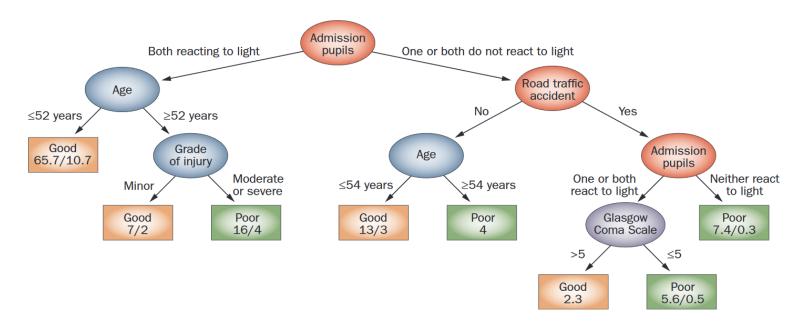
Level-based layout – applications





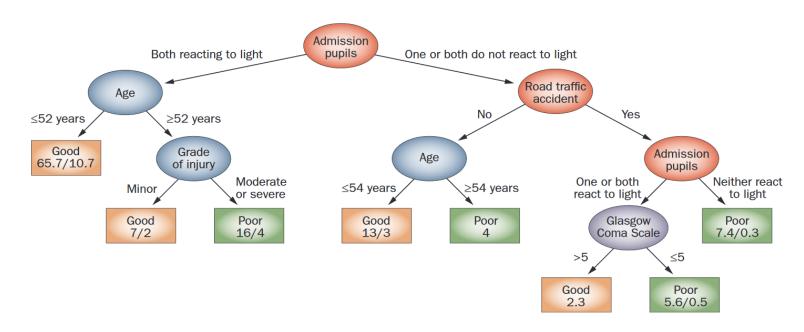
Family tree of LOTR elves and half-elves

Level-based layout – drawing style



- What are properties of the layout?
- What are the drawing conventions?
- What are aesthetics to optimise?

Level-based layout – drawing style

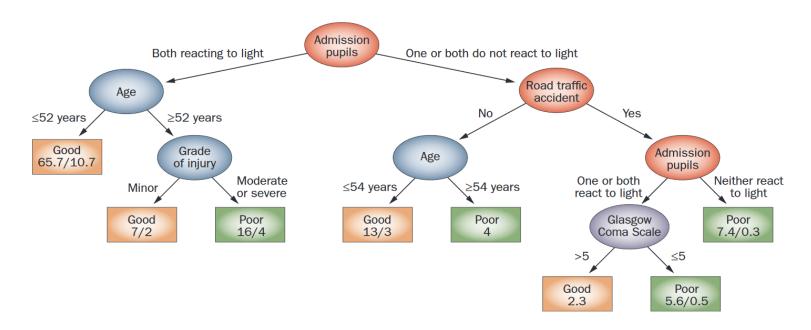


- What are properties of the layout?
- What are the drawing conventions?
- What are aesthetics to optimise?

Drawing conventions

- Vertices lie on layers and have integer coordinates
- Parent above children and "within their X-range" (typically, centered)
- Edges are straight-line segments
- Isomorphic subtrees have identical drawings

Level-based layout – drawing style



- What are properties of the layout?
- What are the drawing conventions?
- What are aesthetics to optimise?

Drawing conventions

- Vertices lie on layers and have integer coordinates
- Parent above children and "within their X-range" (typically, centered)
- Edges are straight-line segments
- Isomorphic subtrees have identical drawings

Drawing aesthetics

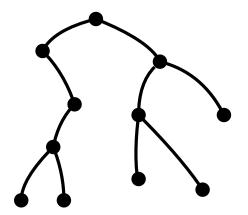
Area

Input: A binary tree T

Output: A leveled drawing of T

Y-cooridinates: depth of vertices

X-cooridinates: based on in-order tree traversal

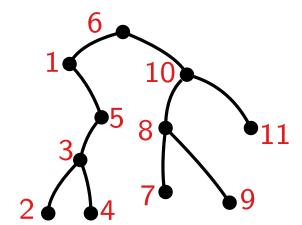


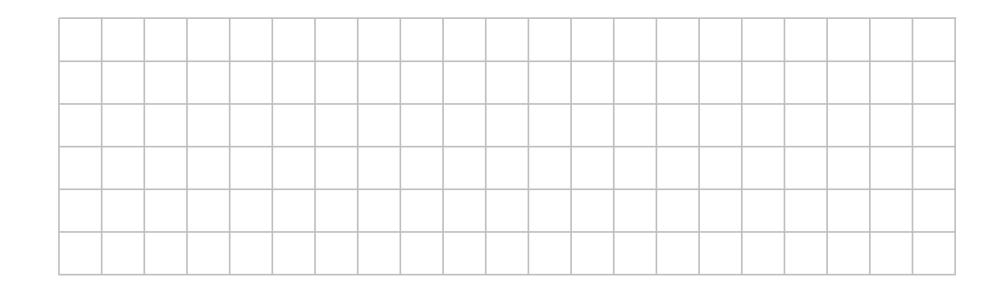
Input: A binary tree T

Output: A leveled drawing of T

Y-cooridinates: depth of vertices

X-cooridinates: based on in-order tree traversal



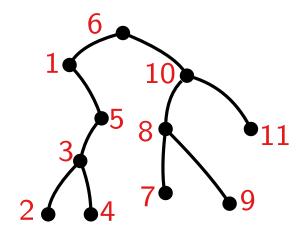


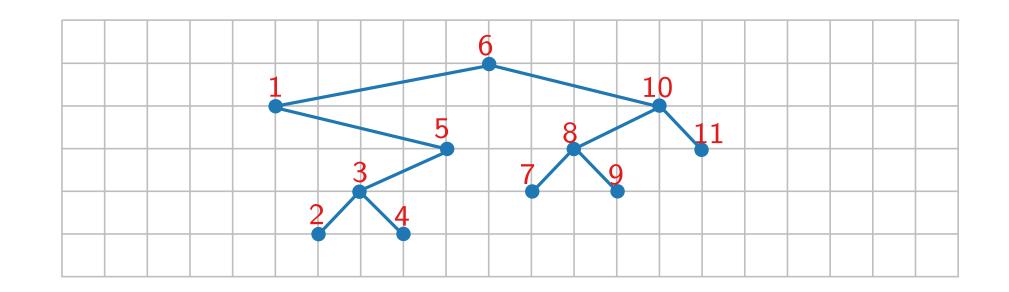
Input: A binary tree T

Output: A leveled drawing of T

Y-cooridinates: depth of vertices

X-cooridinates: based on in-order tree traversal



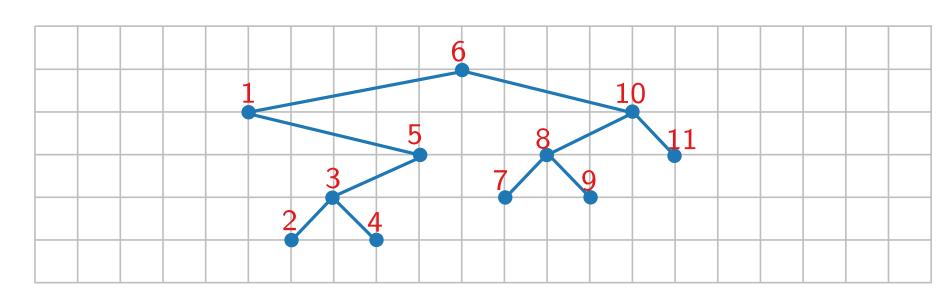


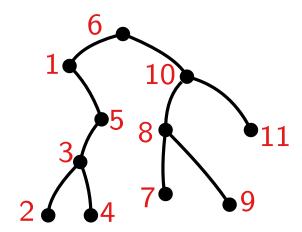
Input: A binary tree T

Output: A leveled drawing of T

Y-cooridinates: depth of vertices

X-cooridinates: based on in-order tree traversal



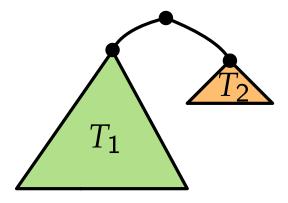


Issues:

- Drawing is wider than needed
- Parents not in the center of span of their children

Input: A binary tree T

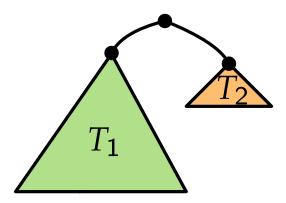
Output: A leveled drawing of T



Input: A binary tree T

Output: A leveled drawing of T

Base case: A single vertex •

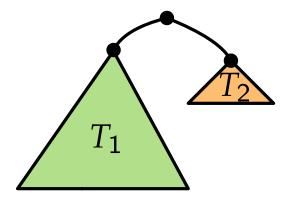


Input: A binary tree T

Output: A leveled drawing of T

Base case: A single vertex •

Divide: Recursively apply the algorithm to

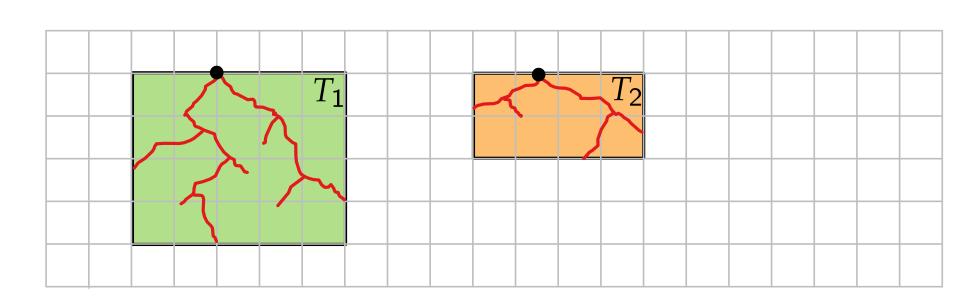


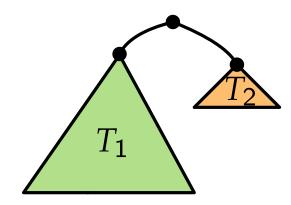
Input: A binary tree T

Output: A leveled drawing of T

Base case: A single vertex •

Divide: Recursively apply the algorithm to



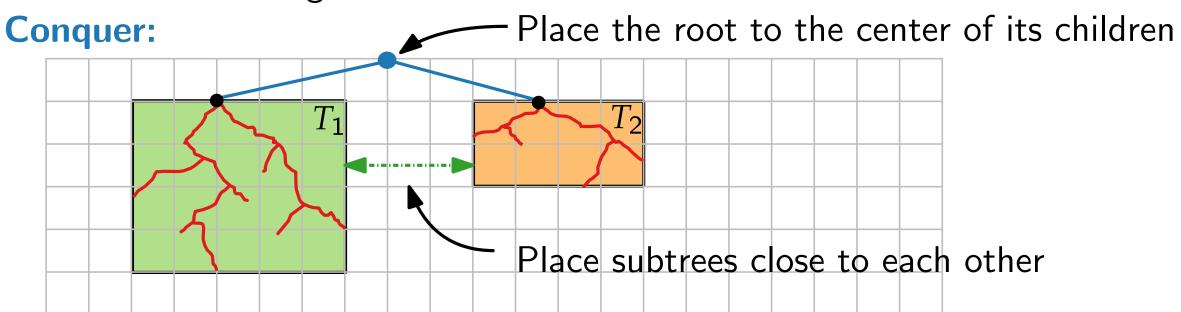


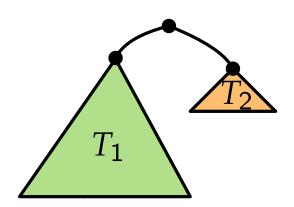
Input: A binary tree T

Output: A leveled drawing of T

Base case: A single vertex •

Divide: Recursively apply the algorithm to



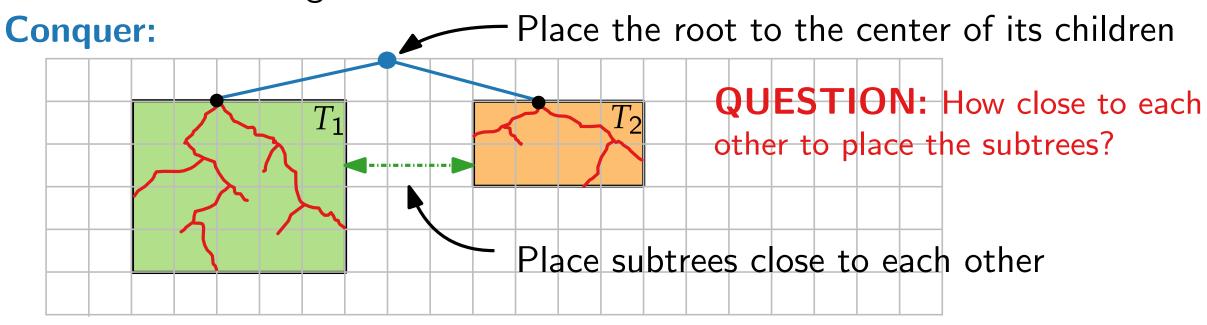


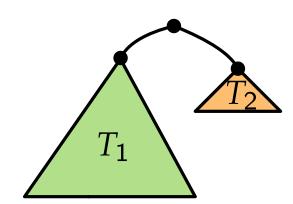
Input: A binary tree T

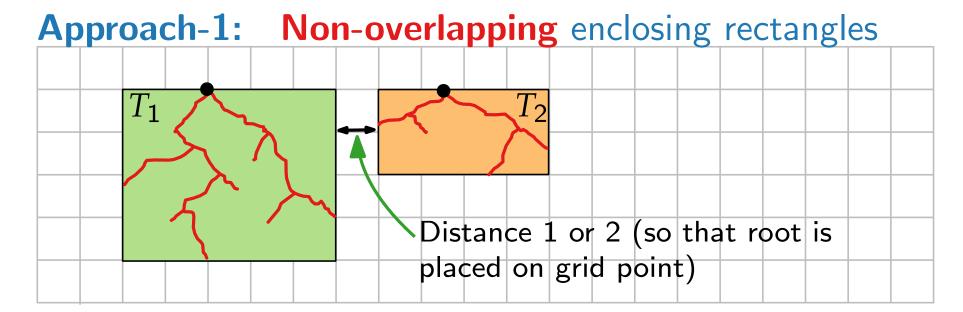
Output: A leveled drawing of T

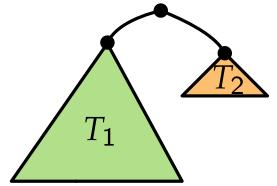
Base case: A single vertex •

Divide: Recursively apply the algorithm to

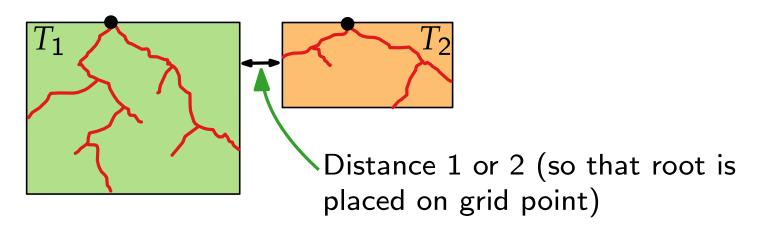


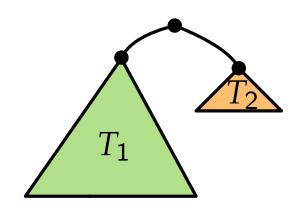




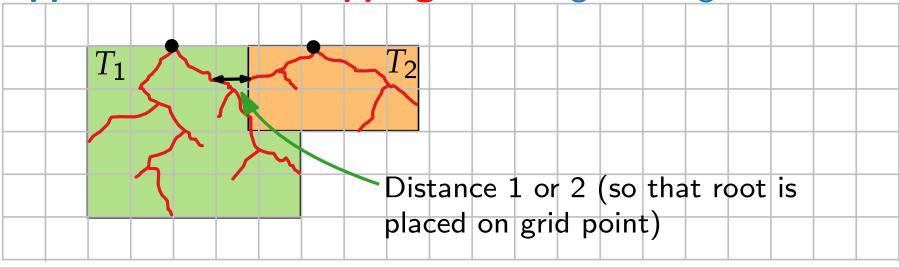


Approach-1: Non-overlapping enclosing rectangles

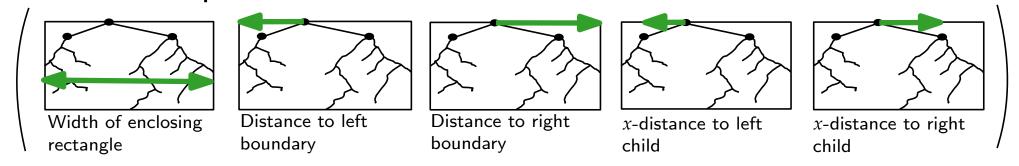




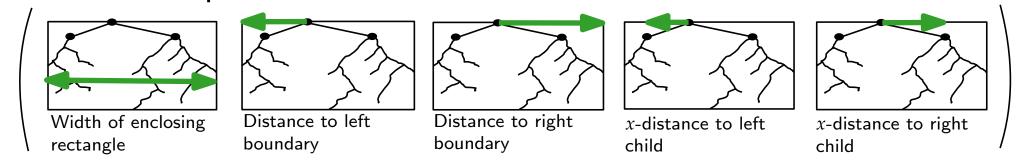
Approach-2: Overlapping enclosing rectangles

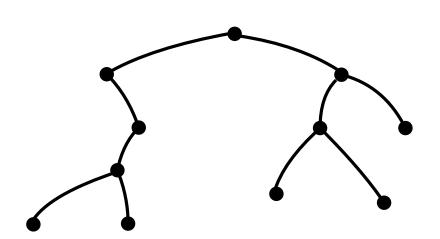


In a bottom up manner (by a post-order traversal) we compute for each vertex the 5-tuple:

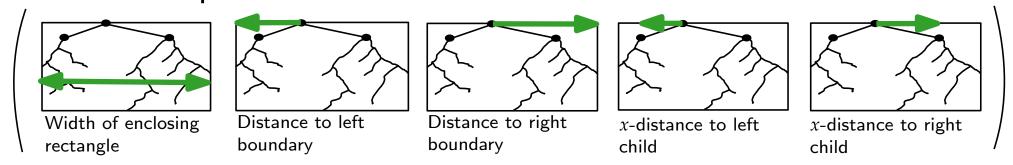


In a bottom up manner (by a post-order traversal) we compute for each vertex the 5-tuple:

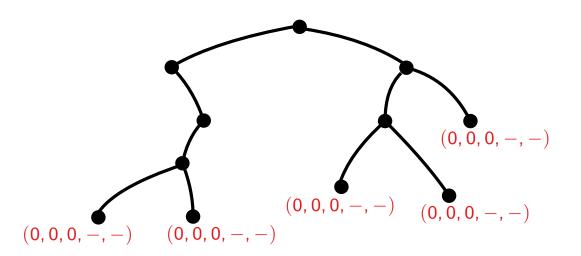




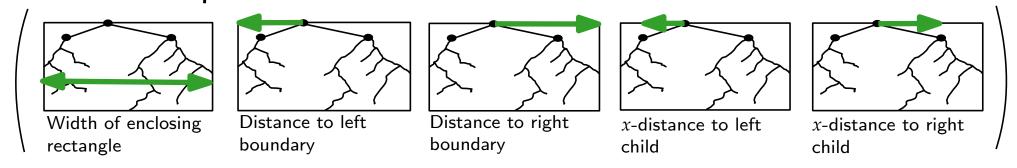
In a bottom up manner (by a post-order traversal) we compute for each vertex the 5-tuple:

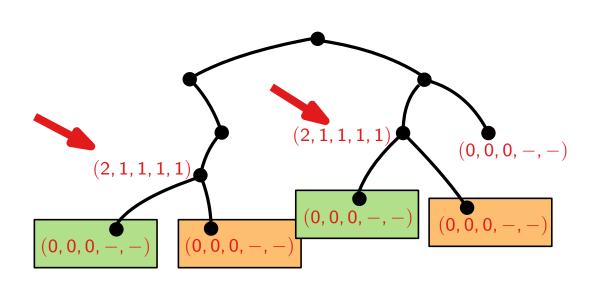


■ For leaves: (0, 0, 0, -, -)



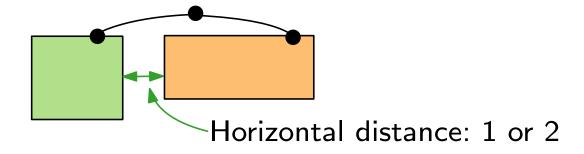
In a bottom up manner (by a post-order traversal) we compute for each vertex the 5-tuple:



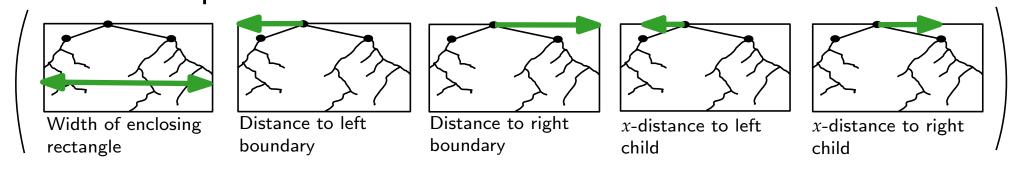


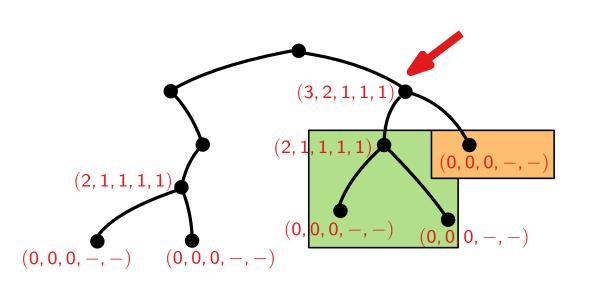
Rule-1:

- Parent centered above children
- Parent at grid point



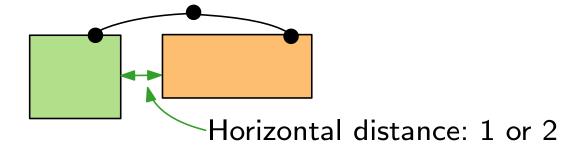
In a bottom up manner (by a post-order traversal) we compute for each vertex the 5-tuple:



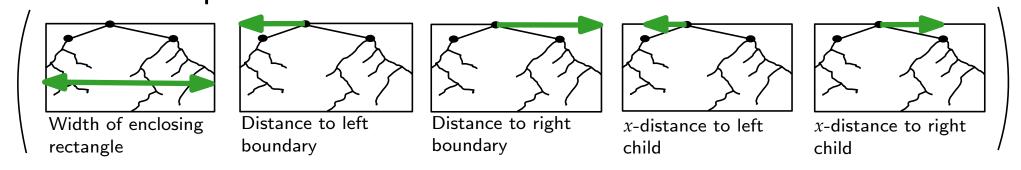


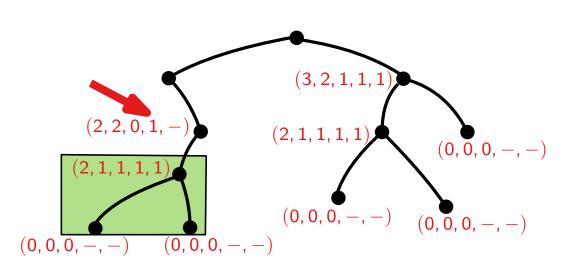
Rule-1:

- Parent centered above children
- Parent at grid point



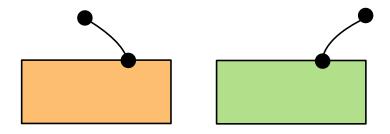
In a bottom up manner (by a post-order traversal) we compute for each vertex the 5-tuple:



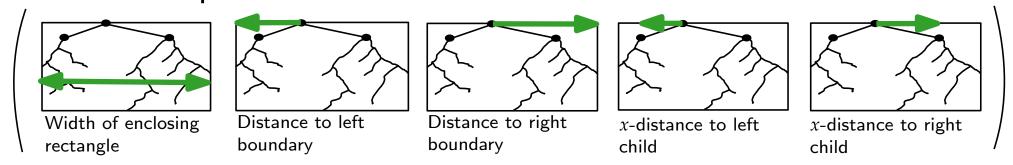


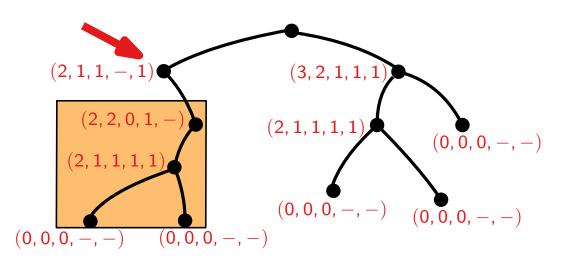
Rule-2:

Parent above and one unit to the left/right of single child



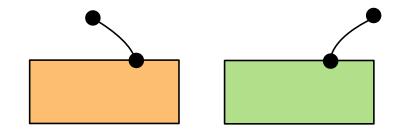
In a bottom up manner (by a post-order traversal) we compute for each vertex the 5-tuple:



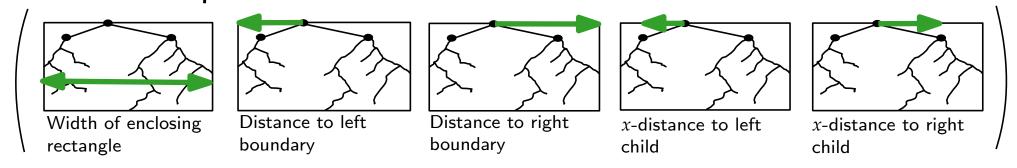


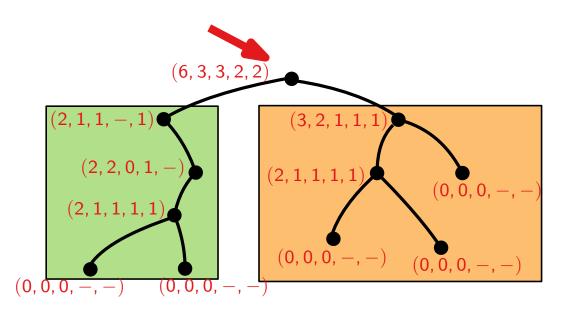
Rule-2:

Parent above and one unit to the left/right of single child



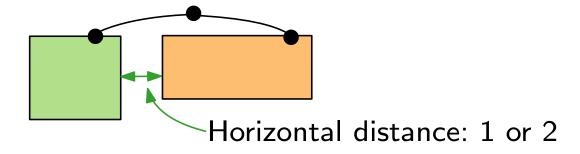
■ In a bottom up manner (by a post-order traversal) we compute for each vertex the 5-tuple:



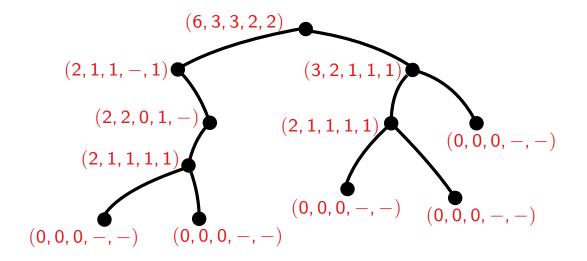


Rule-1:

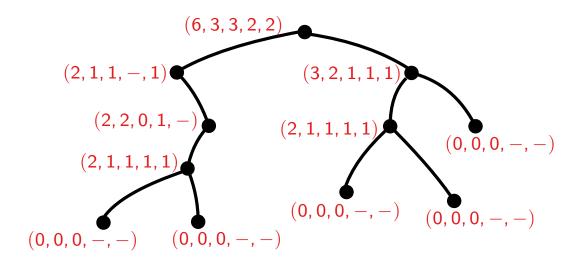
- Parent centered above children
- Parent at grid point



 \blacksquare Computation of x-coordinates by pre-order traversal

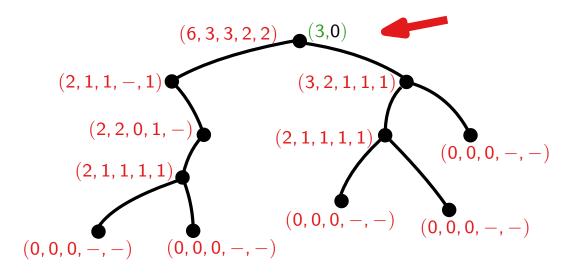


 \blacksquare Computation of x-coordinates by pre-order traversal

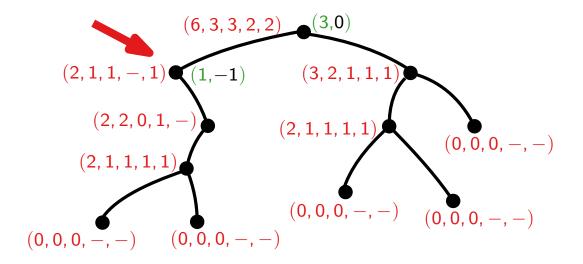


■ *y*-coordinate: the depth of each node

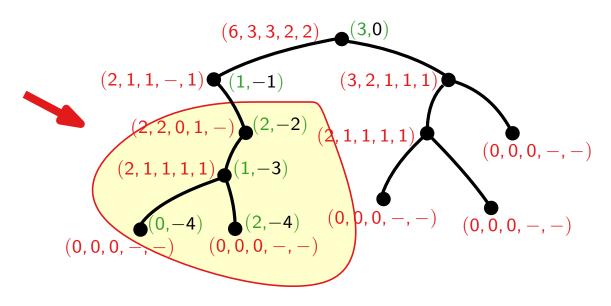
 \blacksquare Computation of x-coordinates by pre-order traversal



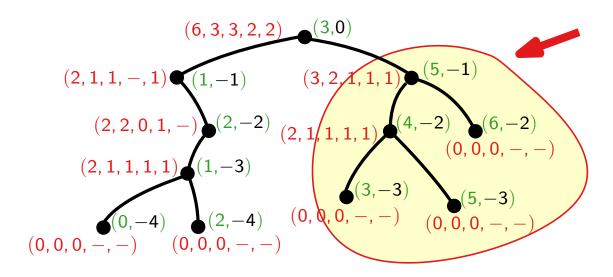
■ Computation of x-coordinates by pre-order traversal



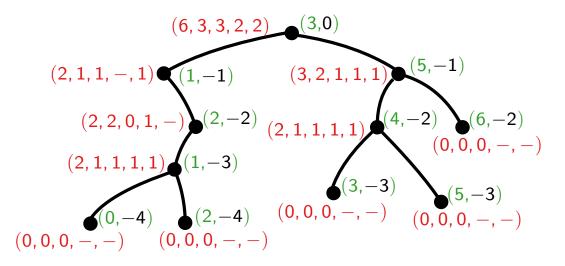
 \blacksquare Computation of x-coordinates by pre-order traversal

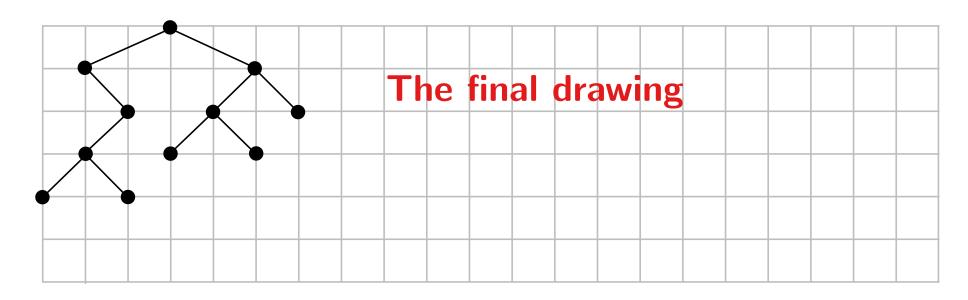


 \blacksquare Computation of x-coordinates by pre-order traversal

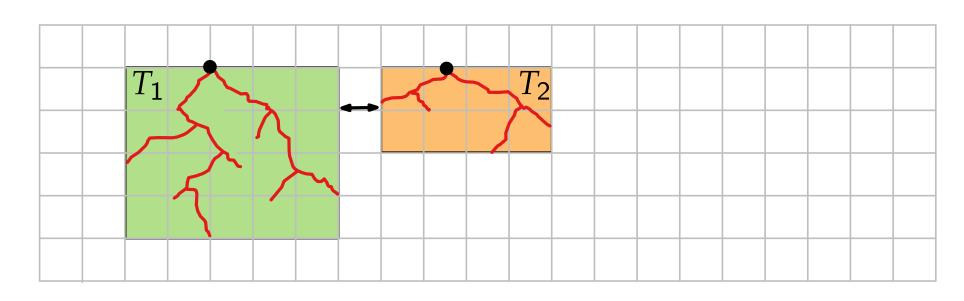


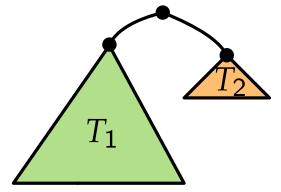
 \blacksquare Computation of x-coordinates by pre-order traversal





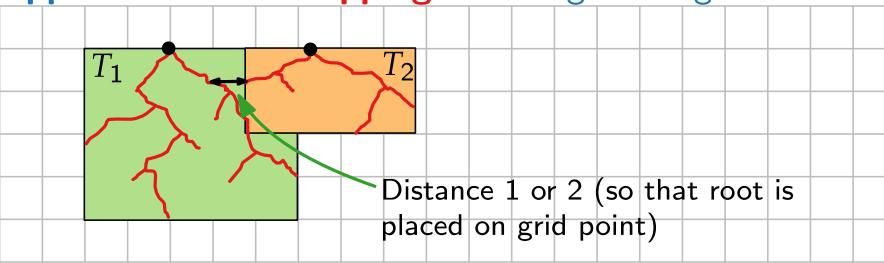
Recall...

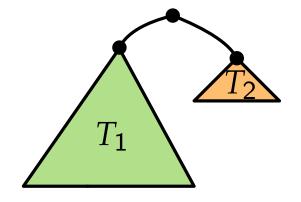




Recall...

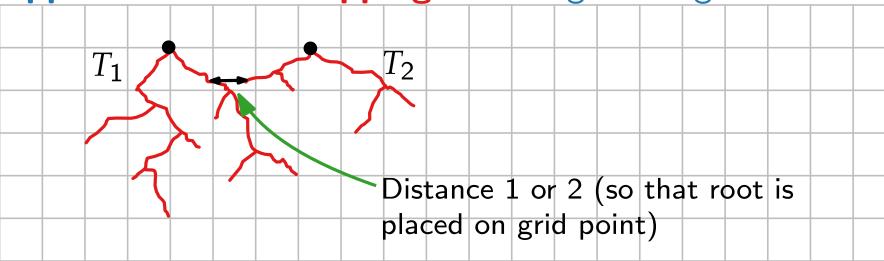
Approach-1: Non-overlapping enclosing rectangles

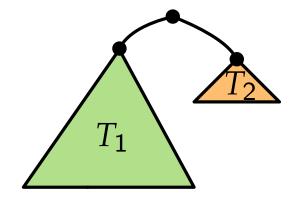




Recall...

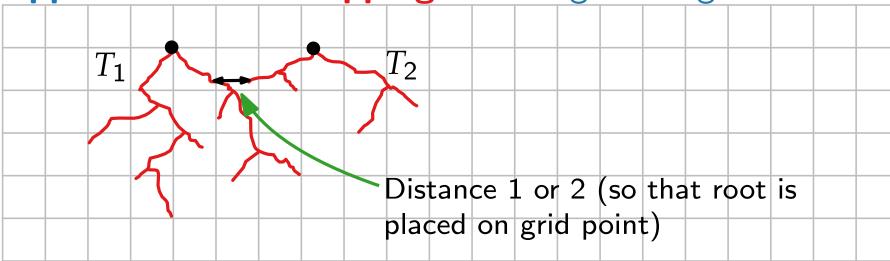
Approach-1: Non-overlapping enclosing rectangles

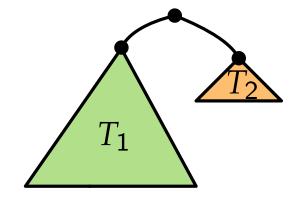


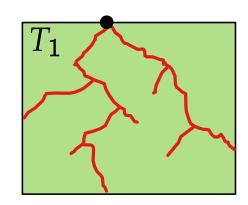


Recall...

Approach-1: Non-overlapping enclosing rectangles

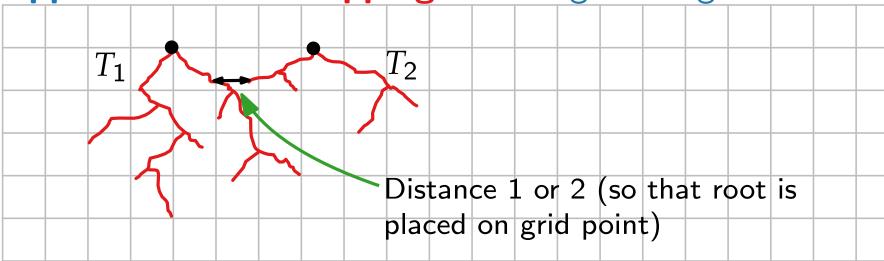


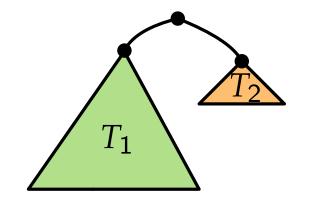


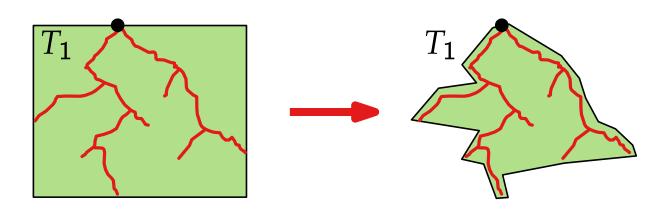


Recall...

Approach-1: Non-overlapping enclosing rectangles

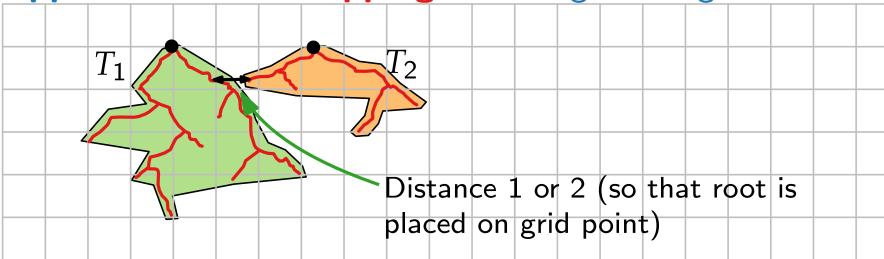


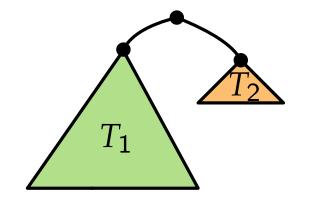


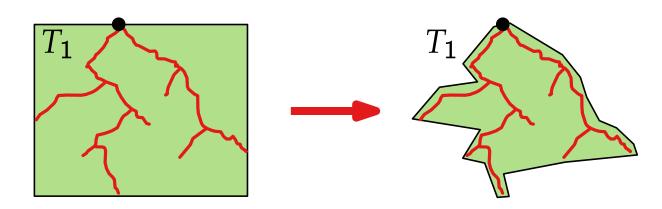


Recall...

Approach-1: Non-overlapping enclosing rectangles

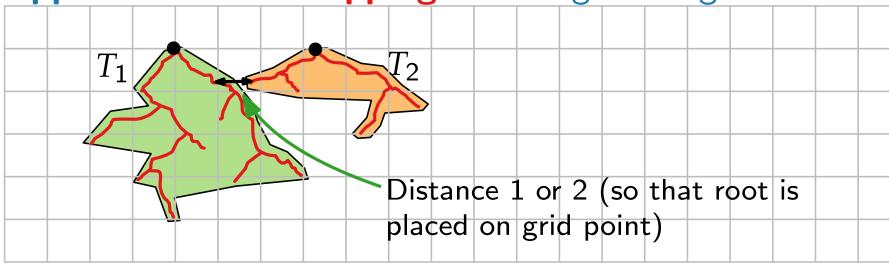


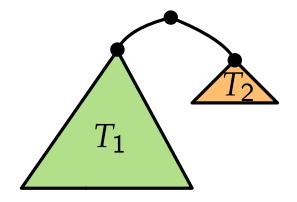


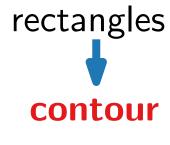


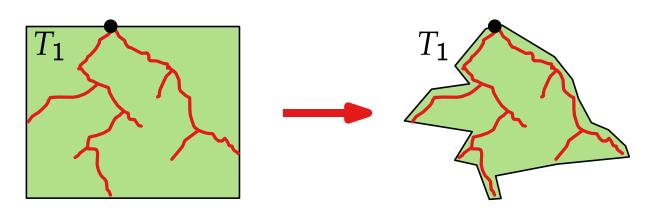
Recall...

Approach-1: Non-overlapping enclosing rectangles



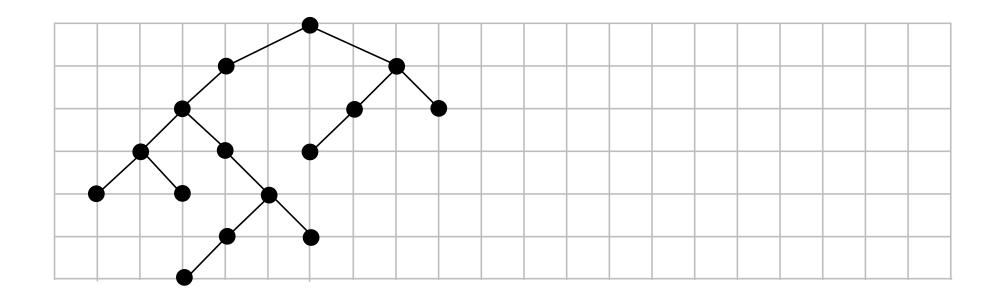




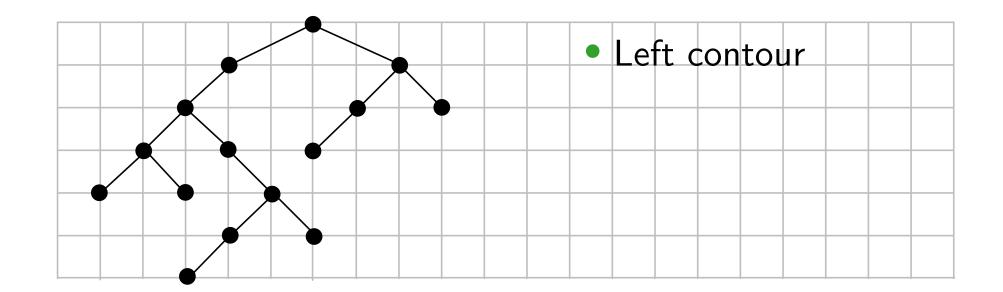


The left/right contour of leveled tree drawing

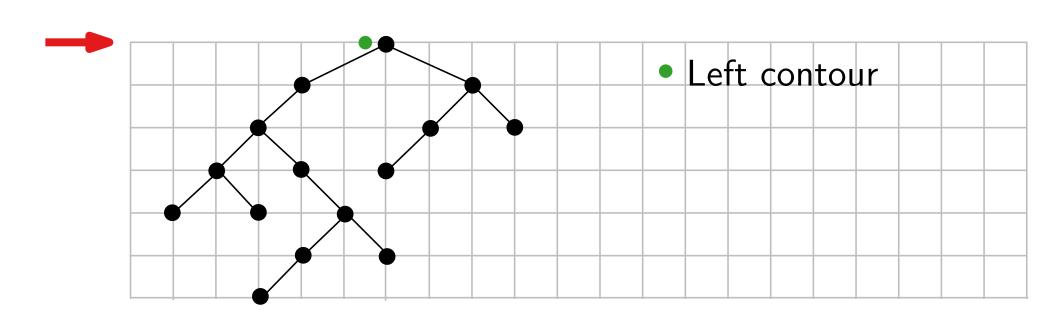
The left/right contour of leveled tree drawing



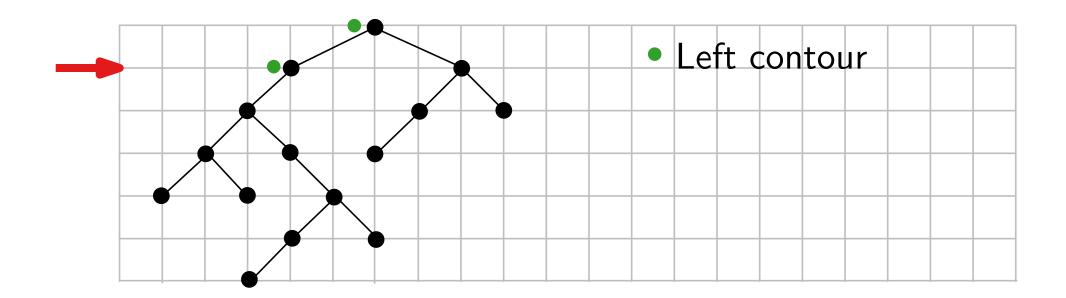
The left/right contour of leveled tree drawing



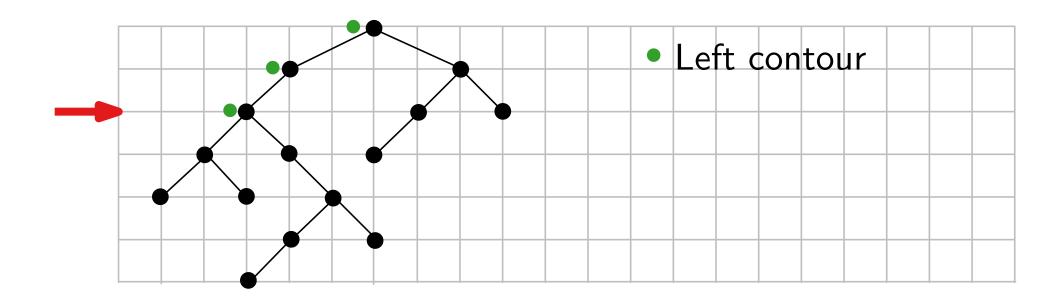
The left/right contour of leveled tree drawing



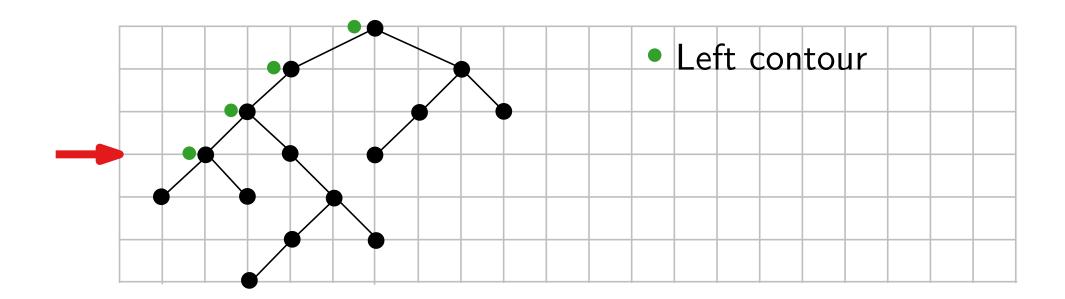
The left/right contour of leveled tree drawing



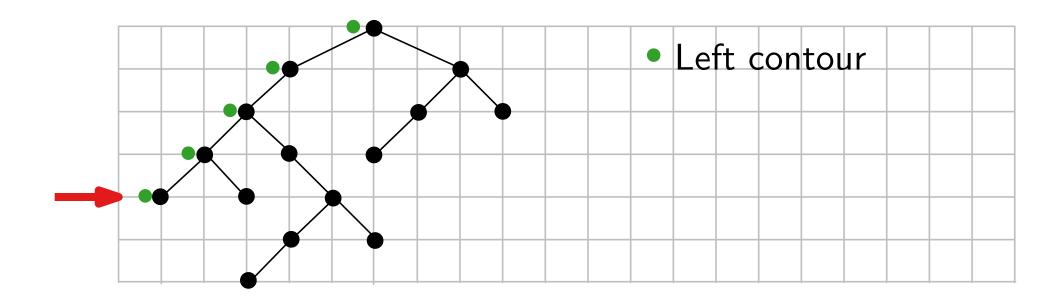
The left/right contour of leveled tree drawing



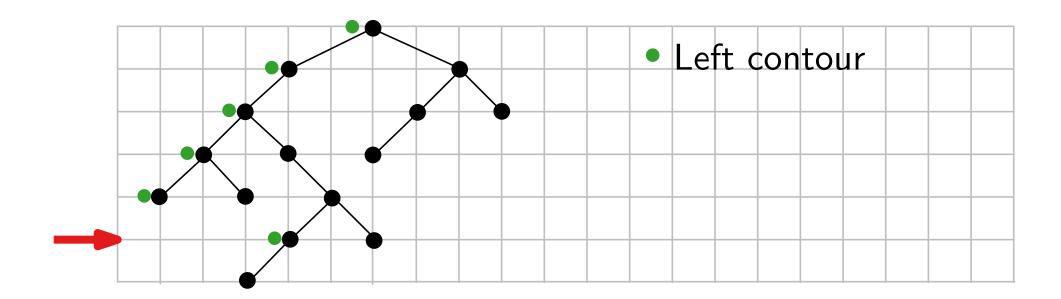
The left/right contour of leveled tree drawing



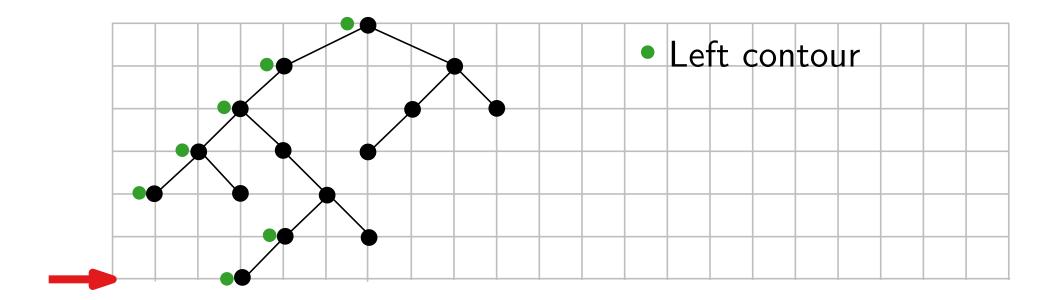
The left/right contour of leveled tree drawing



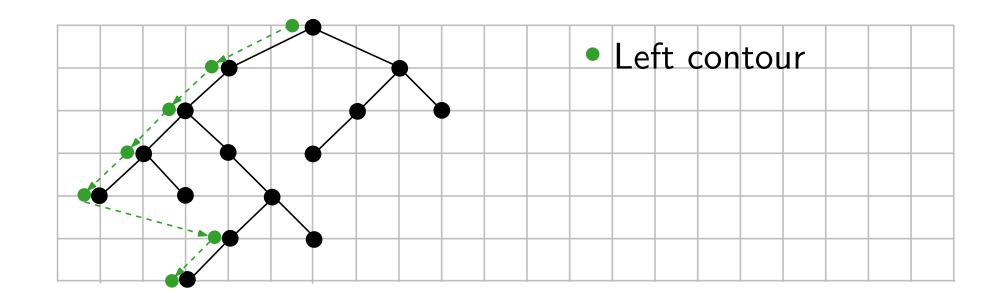
The left/right contour of leveled tree drawing



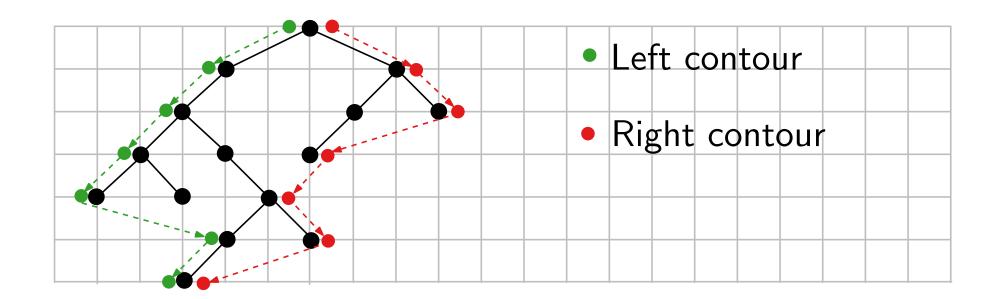
The left/right contour of leveled tree drawing



The left/right contour of leveled tree drawing



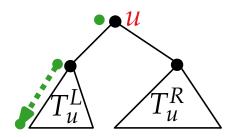
The left/right contour of leveled tree drawing



- -the *left contours* of its subtrees
- -the *heights* of its subtress

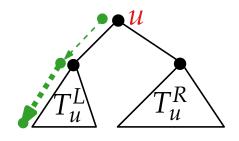
- -the *left contours* of its subtrees
- -the *heights* of its subtress

Case-1:
$$h(T_u^L) = h(T_u^R)$$



- -the *left contours* of its subtrees
- -the *heights* of its subtress

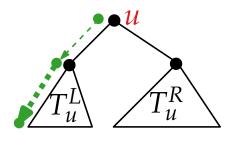
Case-1:
$$h(T_u^L) = h(T_u^R)$$



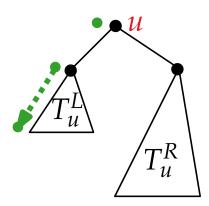
$$O(1)$$
-time

- -the *left contours* of its subtrees
- -the *heights* of its subtress

Case-1:
$$h(T_u^L) = h(T_u^R)$$

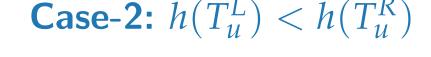


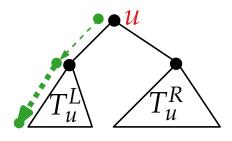
$$O(1)$$
-time



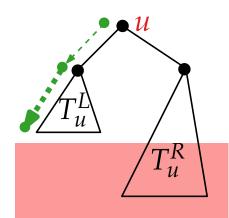
- -the *left contours* of its subtrees
- -the *heights* of its subtress

Case-1:
$$h(T_u^L) = h(T_u^R)$$
 Case-2: $h(T_u^L) < h(T_u^R)$



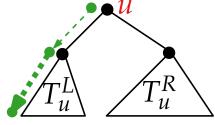


$$O(1)$$
-time

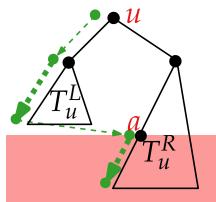


- -the *left contours* of its subtrees
- -the *heights* of its subtress

Case-1:
$$h(T_u^L) = h(T_u^R)$$



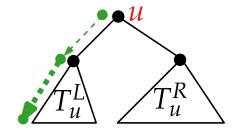
$$O(1)$$
-time



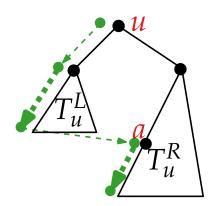
Computation of the left contour of a tree rooted at u, given

- -the *left contours* of its subtrees
- -the *heights* of its subtress

Case-1:
$$h(T_u^L) = h(T_u^R)$$
 Case-2: $h(T_u^L) < h(T_u^R)$



Case-2:
$$h(T_u^L) < h(T_u^R)$$



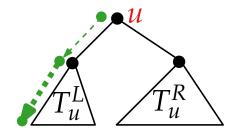
$$O(h(T_u^L))$$
-time

[We traverse T_u^L and T_u^R simultaneously in order to identify vertex a of T_u^R]

Computation of the left contour of a tree rooted at u, given

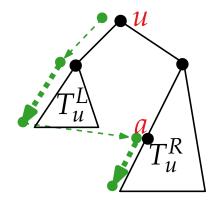
- -the *left contours* of its subtrees
- -the *heights* of its subtress

Case-1:
$$h(T_u^L) = h(T_u^R)$$



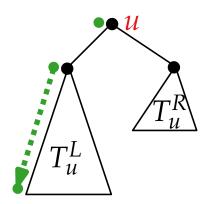
$$O(1)$$
-time

Case-2:
$$h(T_u^L) < h(T_u^R)$$



$$O(h(T_u^L))$$
-time

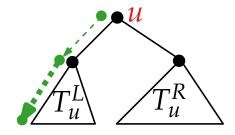
[We traverse T_u^L and T_u^R simultaneously in order to identify vertex a of T_u^R]



Computation of the left contour of a tree rooted at u, given

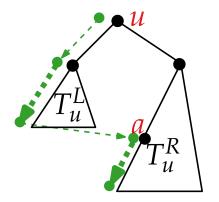
- -the *left contours* of its subtrees
- -the *heights* of its subtress

Case-1:
$$h(T_u^L) = h(T_u^R)$$
 Case-2: $h(T_u^L) < h(T_u^R)$ Case-3: $h(T_u^L) > h(T_u^R)$



$$O(1)$$
-time

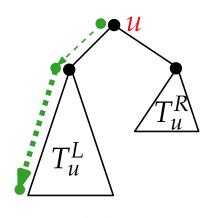
Case-2:
$$h(T_u^L) < h(T_u^R)$$



$$O(h(T_u^L))$$
-time

[We traverse T_u^L and T_u^R simultaneously in order to identify vertex a of T_u^R]

Case-3:
$$h(T_u^L) > h(T_u^R)$$

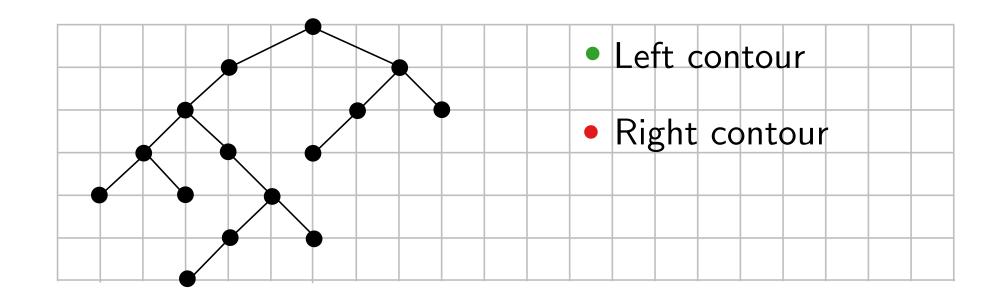


Total cost for computing the contours of a tree:

[We build each contour in a bottom-up fashion through a postorder traversal.]

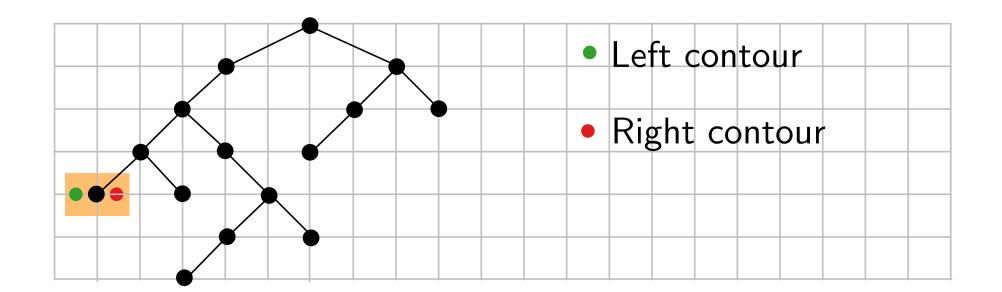
Total cost for computing the contours of a tree:

[We build each contour in a bottom-up fashion through a postorder traversal.]

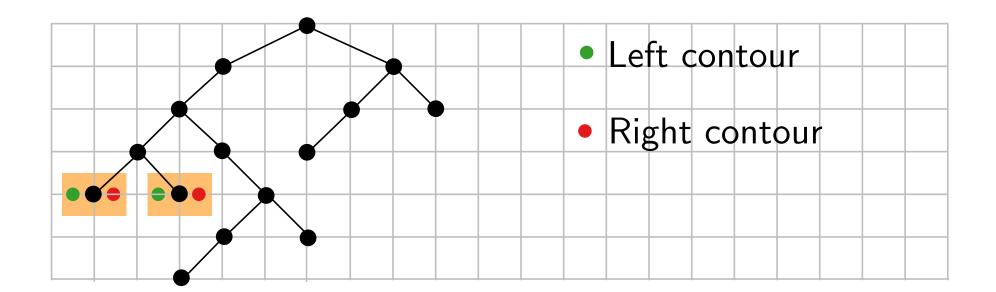


Total cost for computing the contours of a tree:

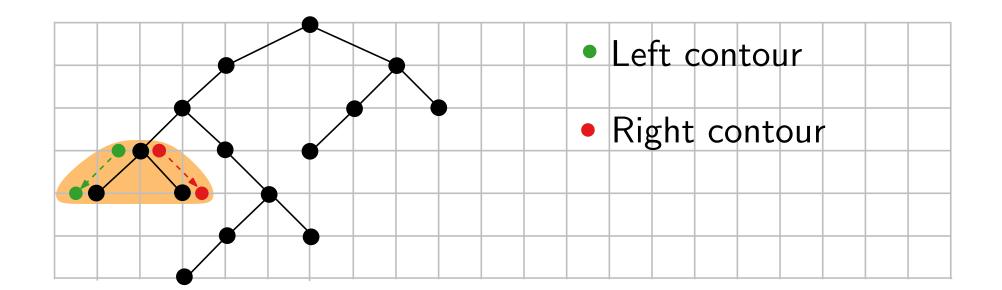
[We build each contour in a bottom-up fashion through a postorder traversal.]



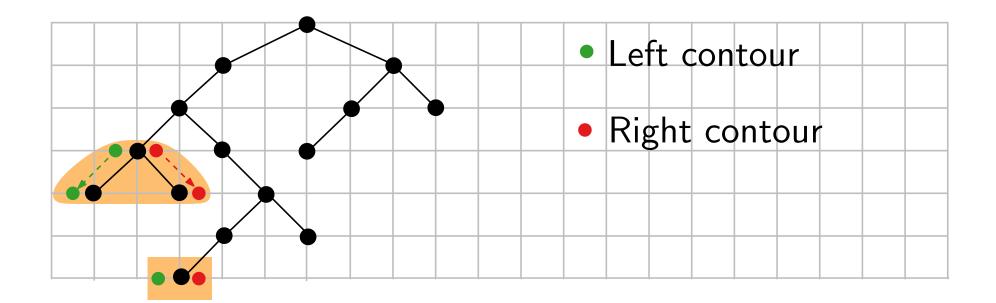
Total cost for computing the contours of a tree:



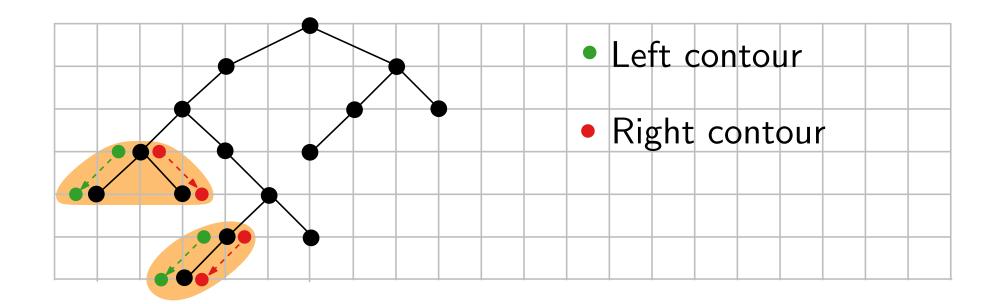
Total cost for computing the contours of a tree:



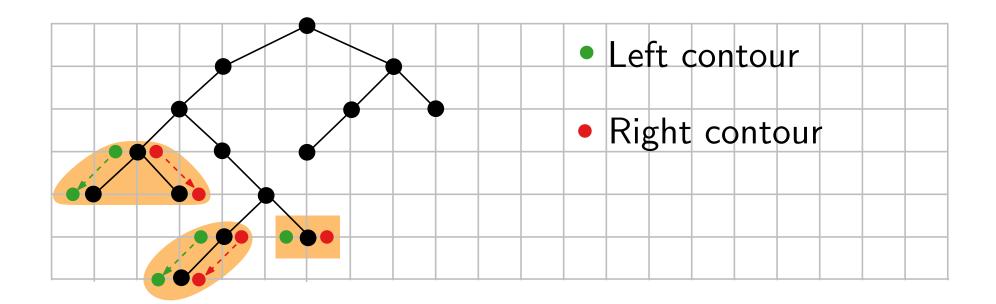
Total cost for computing the contours of a tree:



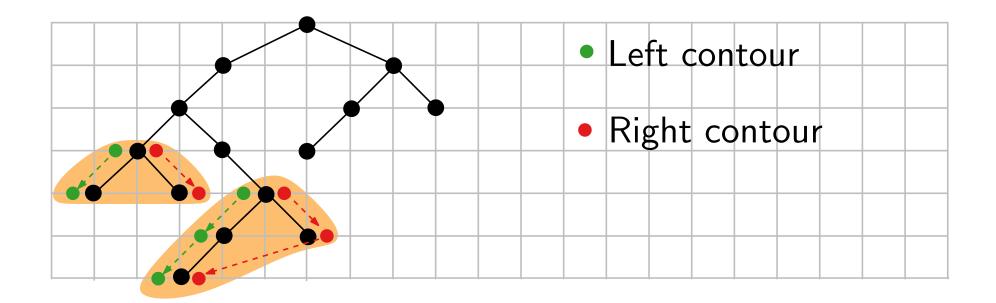
Total cost for computing the contours of a tree:



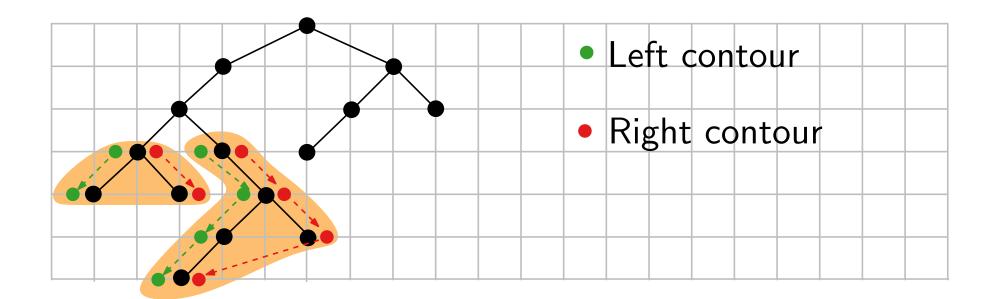
Total cost for computing the contours of a tree:



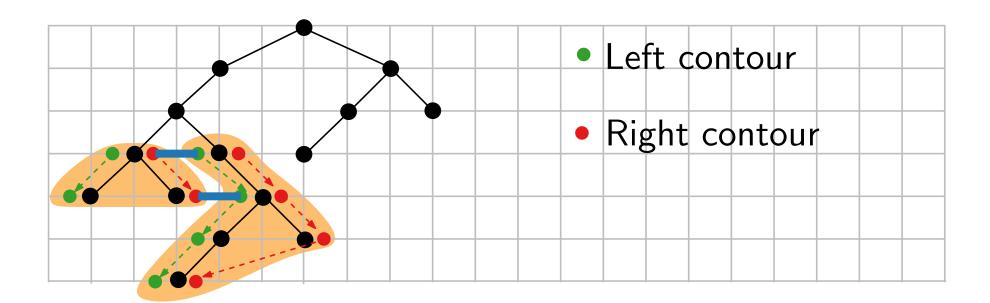
Total cost for computing the contours of a tree:



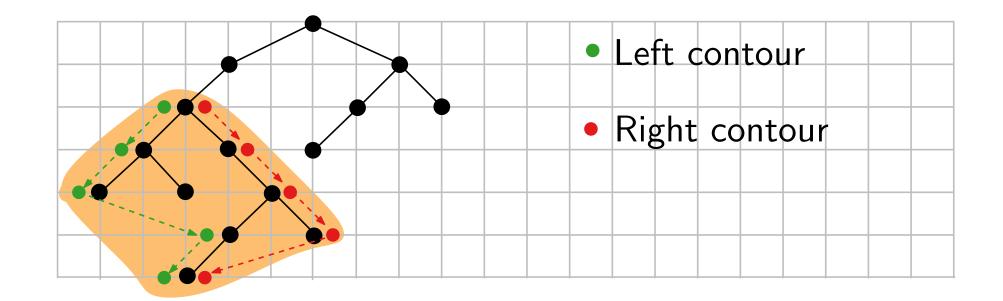
Total cost for computing the contours of a tree:



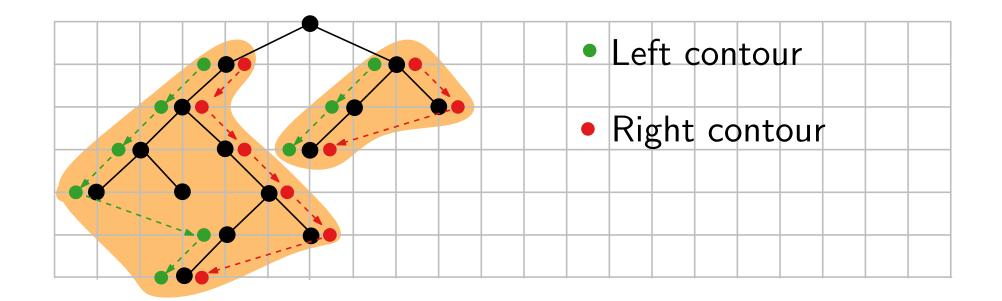
Total cost for computing the contours of a tree:



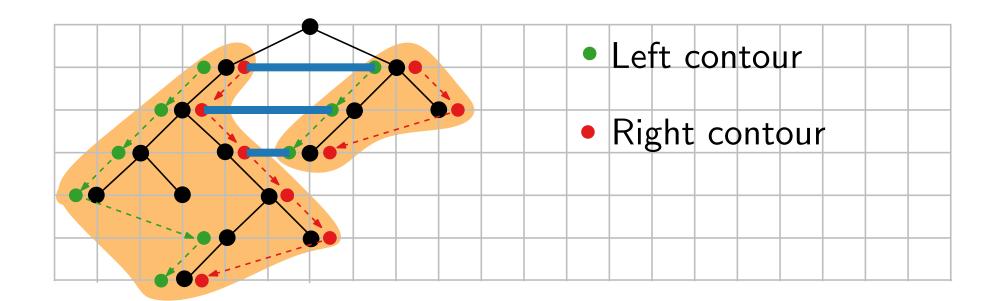
Total cost for computing the contours of a tree:



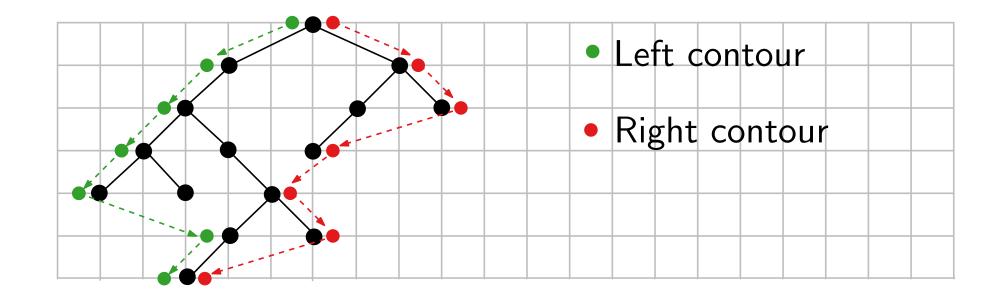
Total cost for computing the contours of a tree:



Total cost for computing the contours of a tree:



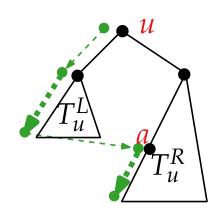
Total cost for computing the contours of a tree:

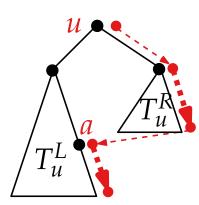


Total cost for computing the contours of a tree:

Total cost for computing the contours of a tree:

$$C(T) \leq \sum_{u \in V(T)} 1 + \min(h(T_u^L), h(T_u^R))$$





Total cost for computing the contours of a tree:

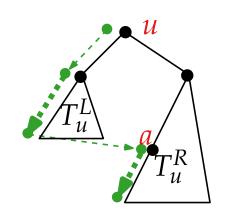
[We build each contour in a bottom-up fashion through a postorder traversal.]

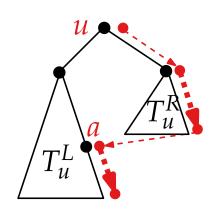
$$C(T) \leq \sum_{u \in V(T)} 1 + \min(h(T_u^L), h(T_u^R))$$

$$= n + \sum_{u \in V(T)} \min(h(T_u^L), h(T_u^R))$$

$$< n + n \qquad \text{(Lemma 1)}$$

$$= 2n$$





Thus, $C(T) \leq 2n$

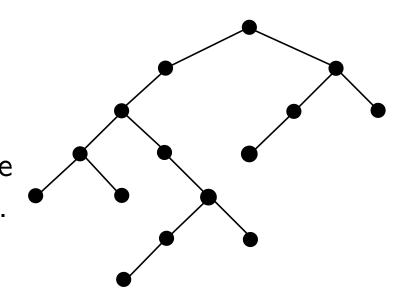
Lemma 1: For each *n*-vertex binary tree it holds that:

$$\sum_{u \in V(T)} \min(h(T_u^L), h(T_u^R)) < n$$

Lemma 1: For each *n*-vertex binary tree it holds that:

$$\sum_{u \in V(T)} \min(h(T_u^L), h(T_u^R)) < n$$

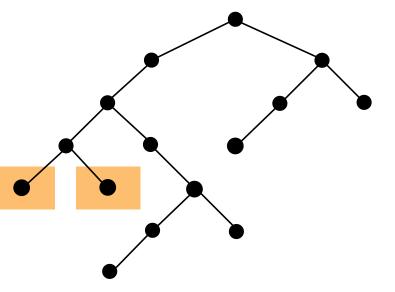
- The height of each subtree is equal to the length of the left/right contour
- We connect each vertex from contour of the shorter subtree to the visible vertex on the contour of the opposite subtree.



Lemma 1: For each *n*-vertex binary tree it holds that:

$$\sum_{u \in V(T)} \min(h(T_u^L), h(T_u^R)) < n$$

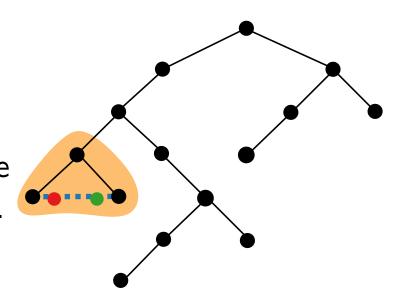
- The height of each subtree is equal to the length of the left/right contour
- We connect each vertex from contour of the shorter subtree to the visible vertex on the contour of the opposite subtree.



Lemma 1: For each *n*-vertex binary tree it holds that:

$$\sum_{u \in V(T)} \min(h(T_u^L), h(T_u^R)) < n$$

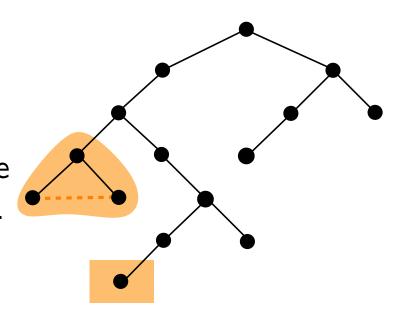
- The height of each subtree is equal to the length of the left/right contour
- We connect each vertex from contour of the shorter subtree to the visible vertex on the contour of the opposite subtree.



Lemma 1: For each *n*-vertex binary tree it holds that:

$$\sum_{u \in V(T)} \min(h(T_u^L), h(T_u^R)) < n$$

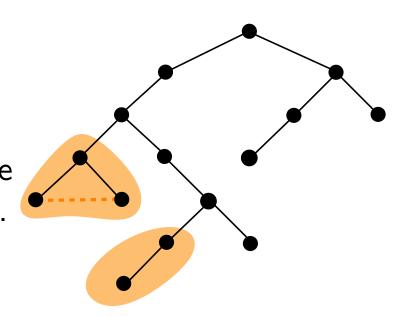
- The height of each subtree is equal to the length of the left/right contour
- We connect each vertex from contour of the shorter subtree to the visible vertex on the contour of the opposite subtree.



Lemma 1: For each *n*-vertex binary tree it holds that:

$$\sum_{u \in V(T)} \min(h(T_u^L), h(T_u^R)) < n$$

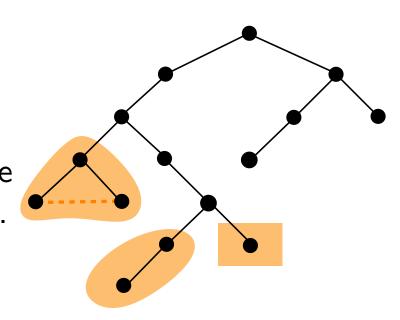
- The height of each subtree is equal to the length of the left/right contour
- We connect each vertex from contour of the shorter subtree to the visible vertex on the contour of the opposite subtree.



Lemma 1: For each *n*-vertex binary tree it holds that:

$$\sum_{u \in V(T)} \min(h(T_u^L), h(T_u^R)) < n$$

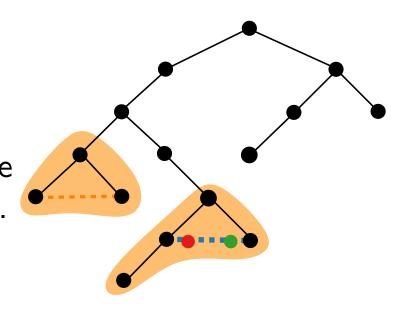
- The height of each subtree is equal to the length of the left/right contour
- We connect each vertex from contour of the shorter subtree to the visible vertex on the contour of the opposite subtree.



Lemma 1: For each *n*-vertex binary tree it holds that:

$$\sum_{u \in V(T)} \min(h(T_u^L), h(T_u^R)) < n$$

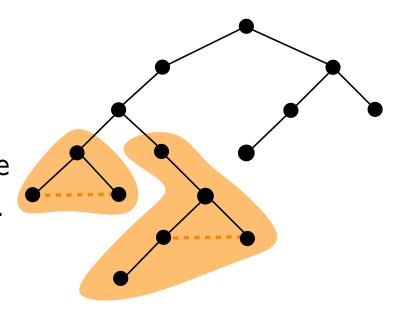
- The height of each subtree is equal to the length of the left/right contour
- We connect each vertex from contour of the shorter subtree to the visible vertex on the contour of the opposite subtree.



Lemma 1: For each *n*-vertex binary tree it holds that:

$$\sum_{u \in V(T)} \min(h(T_u^L), h(T_u^R)) < n$$

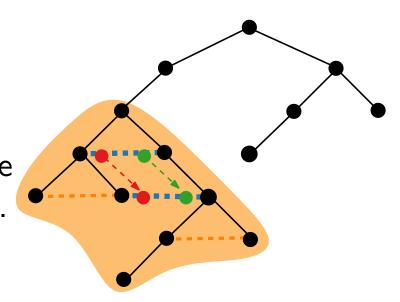
- The height of each subtree is equal to the length of the left/right contour
- We connect each vertex from contour of the shorter subtree to the visible vertex on the contour of the opposite subtree.



Lemma 1: For each *n*-vertex binary tree it holds that:

$$\sum_{u \in V(T)} \min(h(T_u^L), h(T_u^R)) < n$$

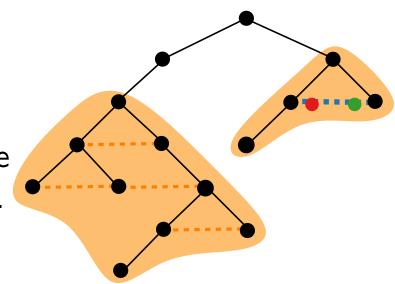
- The height of each subtree is equal to the length of the left/right contour
- We connect each vertex from contour of the shorter subtree to the visible vertex on the contour of the opposite subtree.



Lemma 1: For each *n*-vertex binary tree it holds that:

$$\sum_{u \in V(T)} \min(h(T_u^L), h(T_u^R)) < n$$

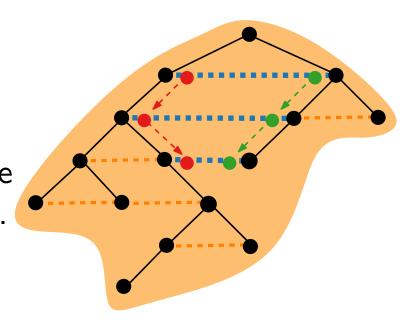
- The height of each subtree is equal to the length of the left/right contour
- We connect each vertex from contour of the shorter subtree to the visible vertex on the contour of the opposite subtree.



Lemma 1: For each *n*-vertex binary tree it holds that:

$$\sum_{u \in V(T)} \min(h(T_u^L), h(T_u^R)) < n$$

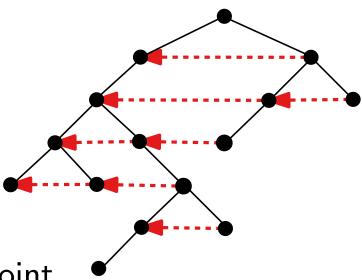
- The height of each subtree is equal to the length of the left/right contour
- We connect each vertex from contour of the shorter subtree to the visible vertex on the contour of the opposite subtree.



Lemma 1: For each *n*-vertex binary tree it holds that:

$$\sum_{u \in V(T)} \min(h(T_u^L), h(T_u^R)) < n$$

- The height of each subtree is equal to the length of the left/right contour
- We connect each vertex from contour of the shorter subtree to the visible vertex on the contour of the opposite subtree.
- We can charge each connection to the vertex at its left endpoint
- Observe that we have at most one connection out of the right side of each vertex. Thus, at most n connections.



Theorem. (Reingold & Tilford '81)

Theorem. (Reingold & Tilford '81)

- \blacksquare Γ is planar, straight-line and strictly downward
- lacksquare Γ is leveled: y-coordinate of vertex v is $-\mathsf{depth}(v)$
- Vertical and horizontal distances are at least 1
- Each vertex is centred wrt its children

Theorem. (Reingold & Tilford '81)

- \blacksquare Γ is planar, straight-line and strictly downward
- lacksquare Γ is leveled: y-coordinate of vertex v is $-\mathsf{depth}(v)$
- Vertical and horizontal distances are at least 1
- Each vertex is centred wrt its children
- \blacksquare Area of Γ is in $\mathcal{O}(n^2)$

Theorem. (Reingold & Tilford '81)

- \blacksquare Γ is planar, straight-line and strictly downward
- lacksquare Γ is leveled: y-coordinate of vertex v is $-\mathsf{depth}(v)$
- Vertical and horizontal distances are at least 1
- Each vertex is centred wrt its children
- lacksquare Area of Γ is in $\mathcal{O}(n^2)$
- Simply isomorphic subtrees have congruent drawings, up to translation
- Axially isomorphic trees have congruent drawings,
 up to translation and reflection around y-axis

generalisable

Theorem. (Reingold & Tilford '81)

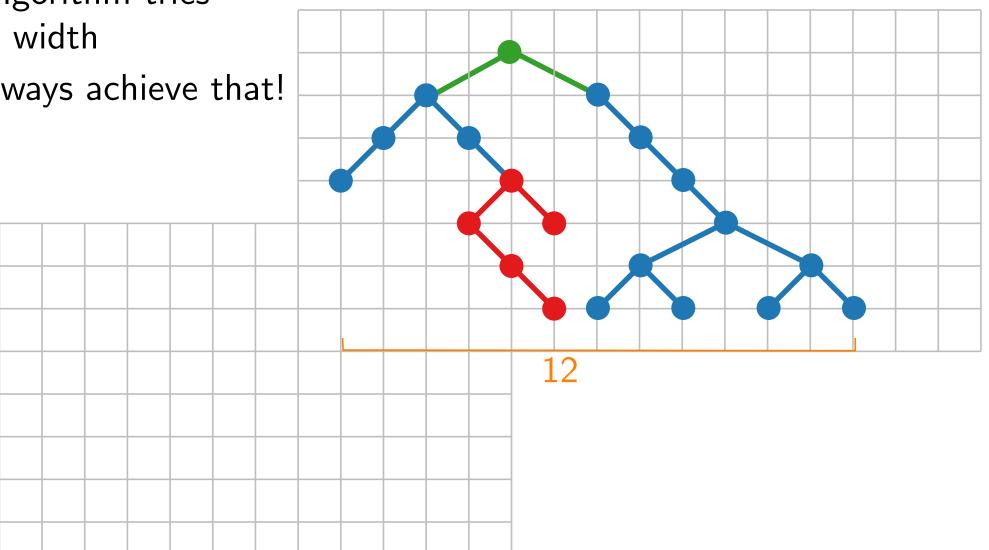
- lacksquare Γ is planar, straight-line and strictly downward
- lacksquare Γ is leveled: y-coordinate of vertex v is $-\mathsf{depth}(v)$
- Vertical and horizontal distances are at least 1
- Each vertex is centred wrt its children
- Area of Γ is in $\mathcal{O}(n^2)$
- Simply isomorphic subtrees have congruent drawings, up to translation
- Axially isomorphic trees have congruent drawings,
 up to translation and reflection around y-axis

Level-based layout — area

- Presented algorithm tries to minimise width
- Does not always achieve that!

Level-based layout — area

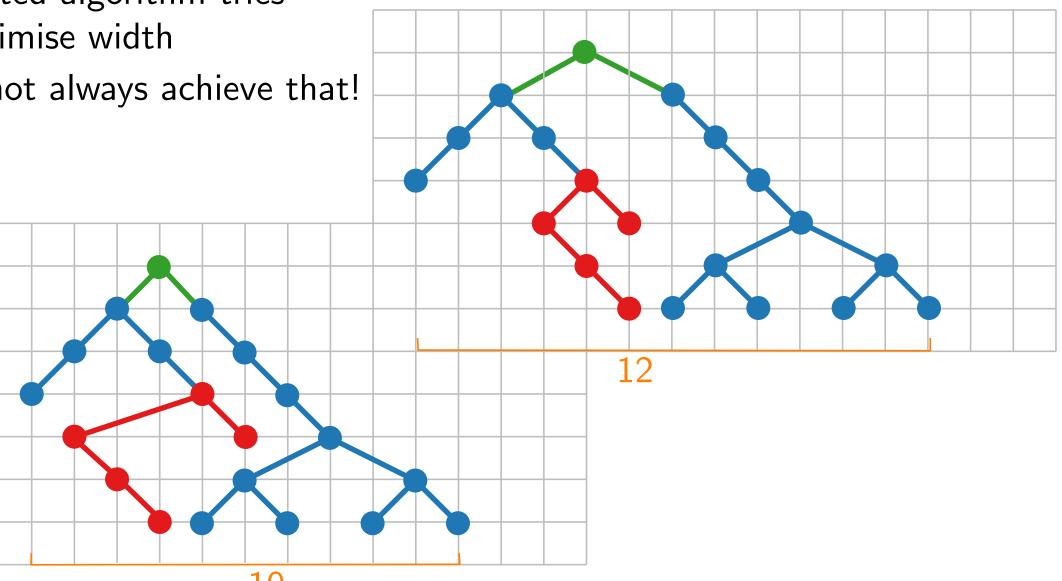
- Presented algorithm tries to minimise width
- Does not always achieve that!



Level-based layout — area

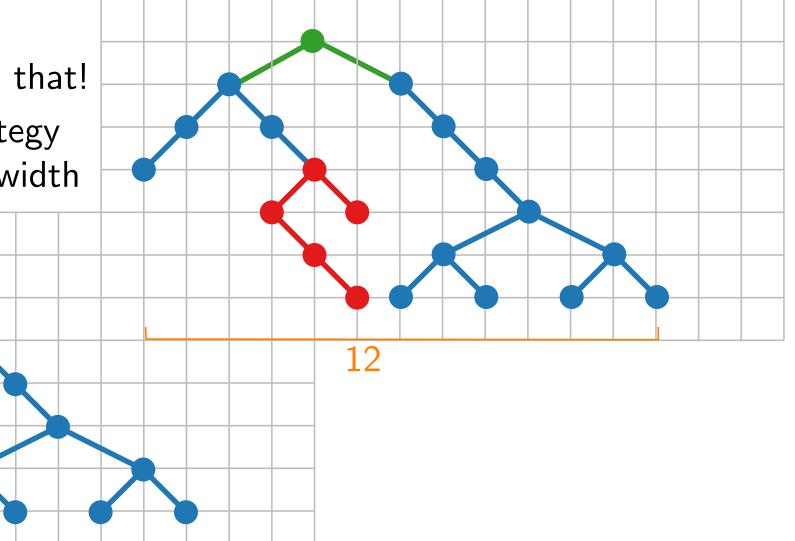
Presented algorithm tries to minimise width

Does not always achieve that!



Level-based layout — area

- Presented algorithm tries to minimise width
- Does not always achieve that!
- Divide-and-conquer strategy cannot achieve optimal width

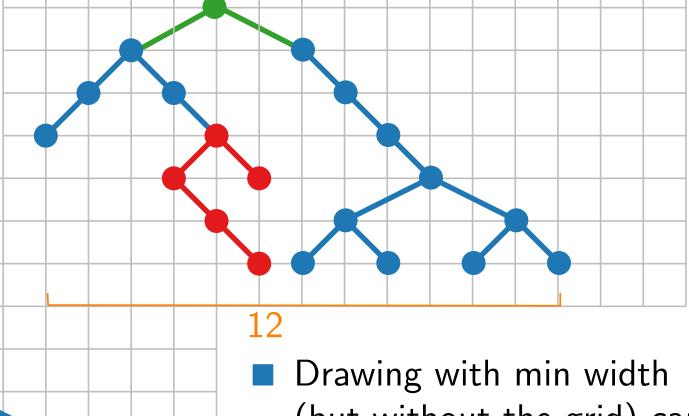


Suboptimal structure leads to better drawing

10

Level-based layout – area

- Presented algorithm tries to minimise width
- Does not always achieve that!
- Divide-and-conquer strategy cannot achieve optimal width



Suboptimal structure leads to better drawing

Drawing with min width (but without the grid) can be constructed by an LP

Level-based layout — area

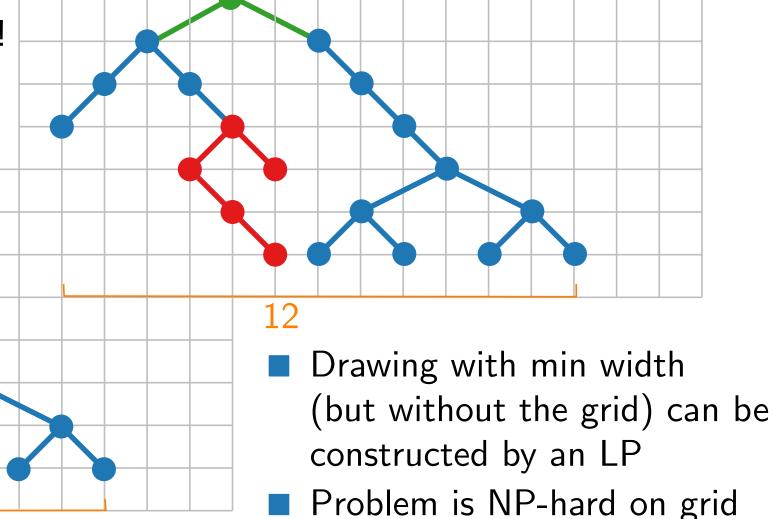
Presented algorithm tries to minimise width

Suboptimal

structure leads to

better drawing

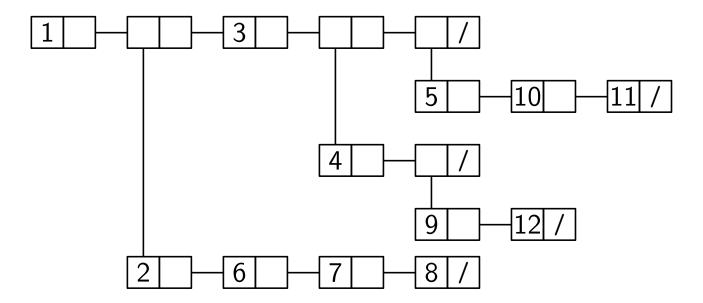
- Does not always achieve that!
- Divide-and-conquer strategy cannot achieve optimal width



10

Applications

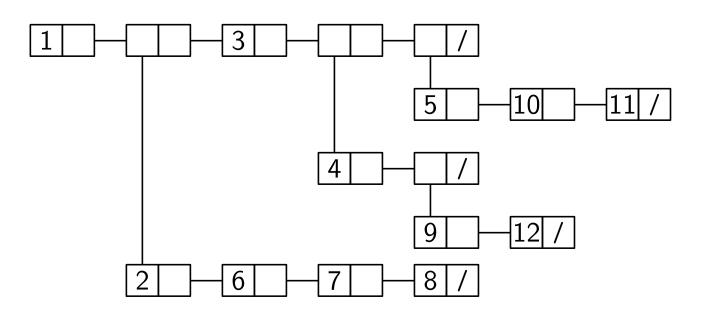
- Cons cell diagram in LISP
- Cons(constructs) are memory objects which hold two values or pointers to values



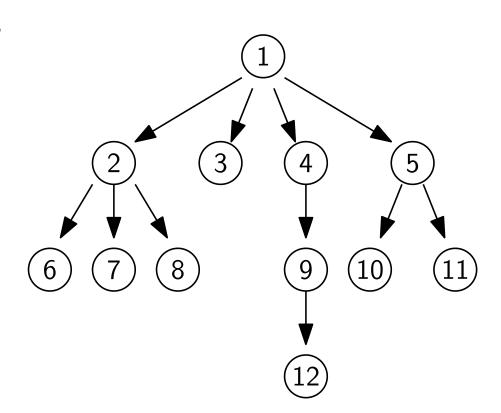
Source: after gajon.org/trees-linked-lists-common-lisp/

Applications

- Cons cell diagram in LISP
- Cons(constructs) are memory objects
 which hold two values or pointers to values

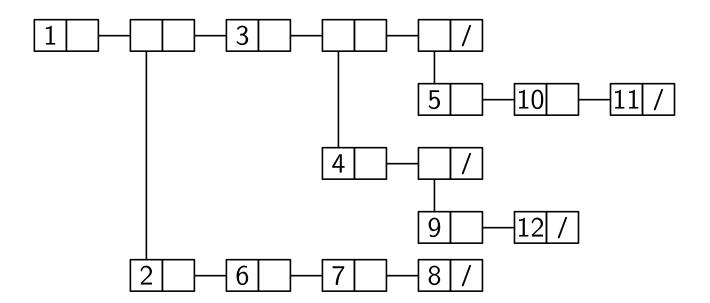


Source: after gajon.org/trees-linked-lists-common-lisp/



Applications

- Cons cell diagram in LISP
- Cons(constructs) are memory objects which hold two values or pointers to values



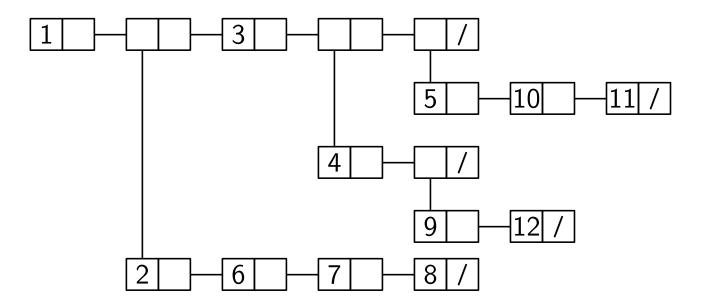
Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

Drawing aesthetics

Applications

- Cons cell diagram in LISP
- Cons(constructs) are memory objects which hold two values or pointers to values



Source: after gajon.org/trees-linked-lists-common-lisp/

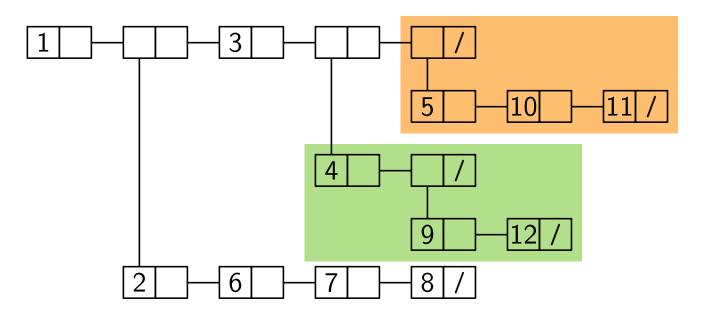
Drawing conventions

Children are vertically and horizontally aligned with their parent

Drawing aesthetics

Applications

- Cons cell diagram in LISP
- Cons(constructs) are memory objects which hold two values or pointers to values



Source: after gajon.org/trees-linked-lists-common-lisp/

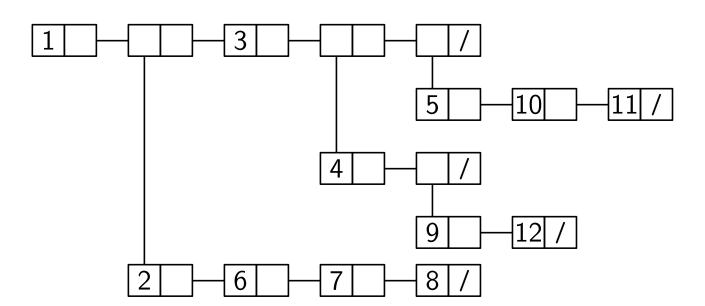
Drawing conventions

- Children are vertically and horizontally aligned with their parent
- The bounding boxes of the subtrees of the children are disjoint

Drawing aesthetics

Applications

- Cons cell diagram in LISP
- Cons(constructs) are memory objects which hold two values or pointers to values



Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

- Children are vertically and horizontally aligned with their parent
- The bounding boxes of the subtrees of the children are disjoint

Drawing aesthetics

■ Height, width, area

hv-drawings – algorithm

Input: A binary tree T

Output: A hv-drawing of T

Base case: •

Divide: Recursively apply the algorithm to

draw the left and right subtrees

Conquer:

hv-drawings – algorithm

Input: A binary tree T

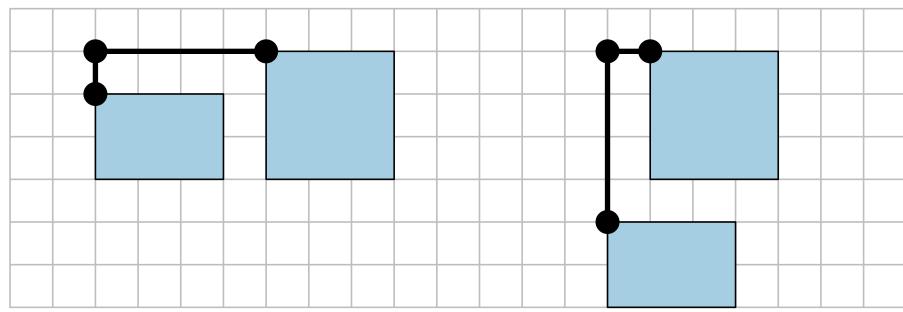
Output: A hv-drawing of T

Base case:

Divide: Recursively apply the algorithm to

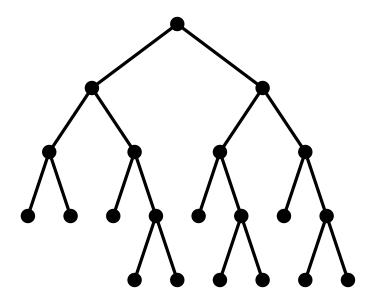
draw the left and right subtrees

Conquer: horizontal combination vertical combination

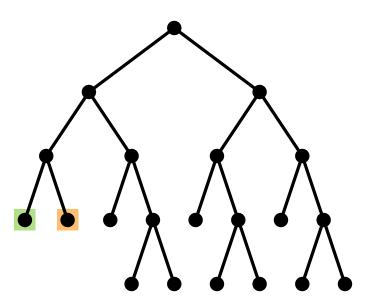


- Always apply horizontal combination
- Place the larger subtree to the right
 - Size of subtree := number of vertices

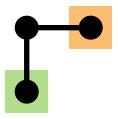
- Always apply horizontal combination
- Place the larger subtree to the right
 - Size of subtree := number of vertices

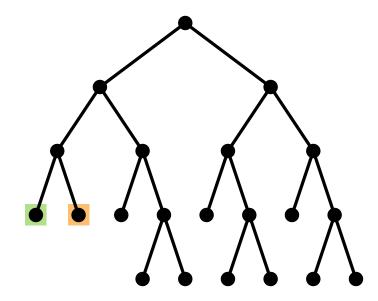


- Always apply horizontal combination
- Place the larger subtree to the right
 - Size of subtree := number of vertices

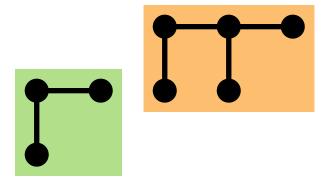


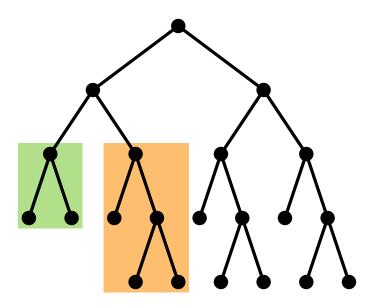
- Always apply horizontal combination
- Place the larger subtree to the right
 - Size of subtree := number of vertices



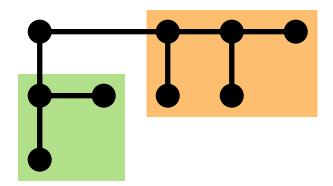


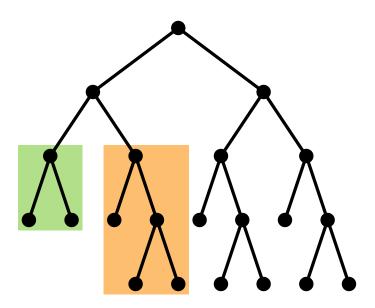
- Always apply horizontal combination
- Place the larger subtree to the right
 - Size of subtree := number of vertices



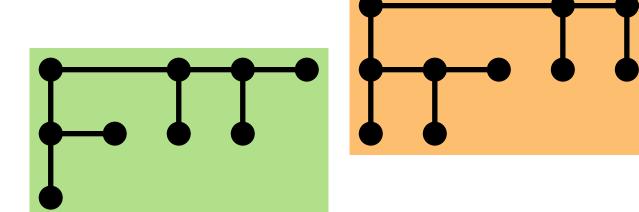


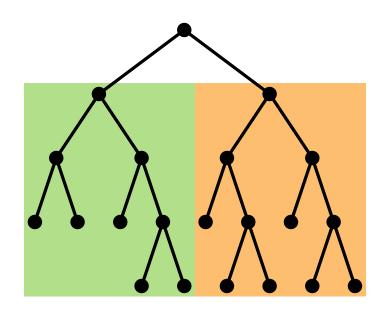
- Always apply horizontal combination
- Place the larger subtree to the right
 - Size of subtree := number of vertices



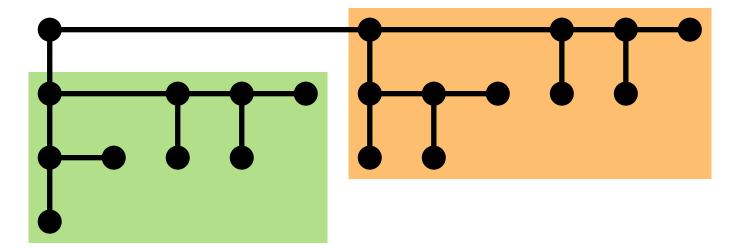


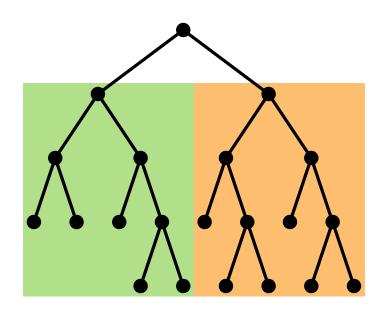
- Always apply horizontal combination
- Place the larger subtree to the right
 - Size of subtree := number of vertices





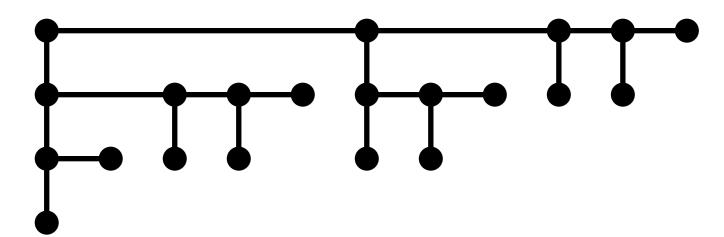
- Always apply horizontal combination
- Place the larger subtree to the right
 - Size of subtree := number of vertices

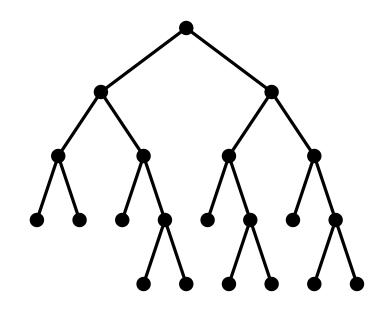




Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right
 - Size of subtree := number of vertices

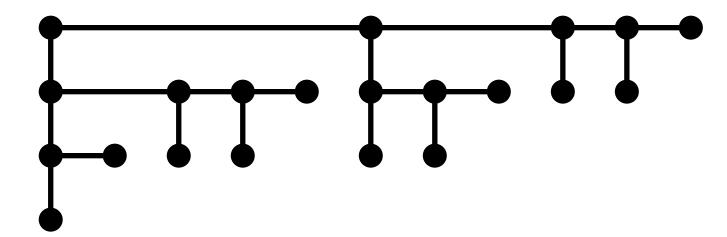


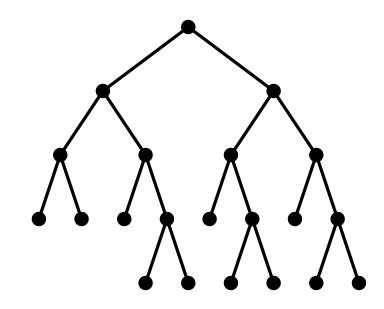


- width at most and
- height at most

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right
 - Size of subtree := number of vertices

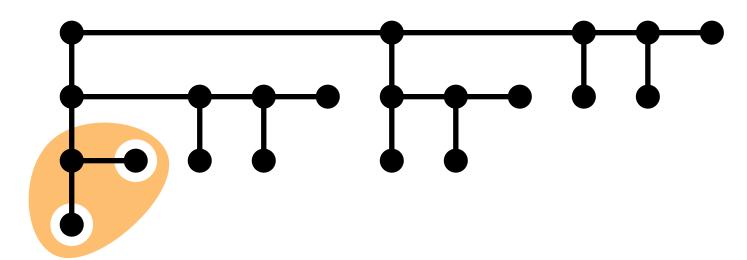


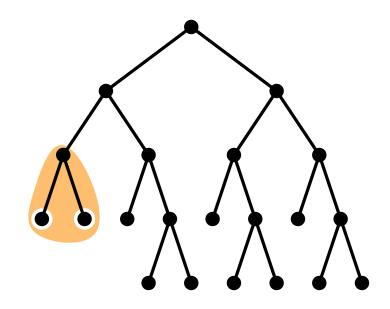


- \blacksquare width at most n-1 and
- height at most

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right
 - Size of subtree := number of vertices

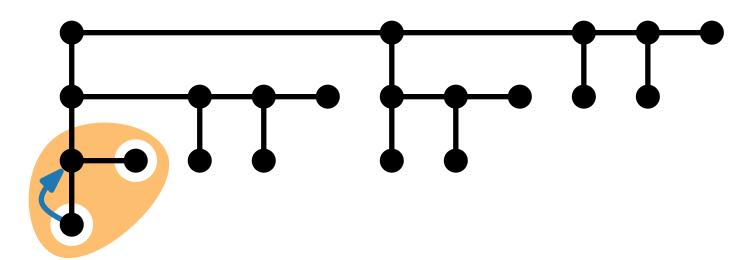


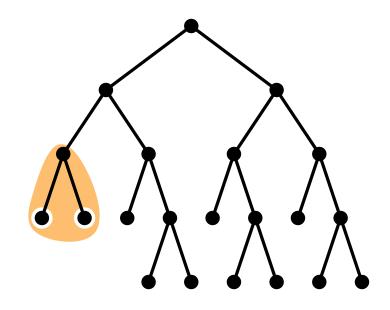


- width at most n-1 and
- height at most

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right
 - Size of subtree := number of vertices

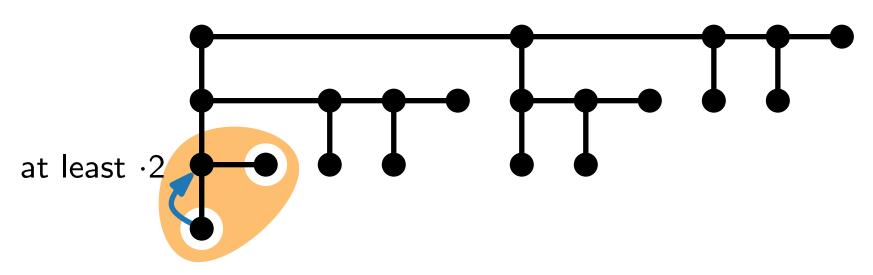


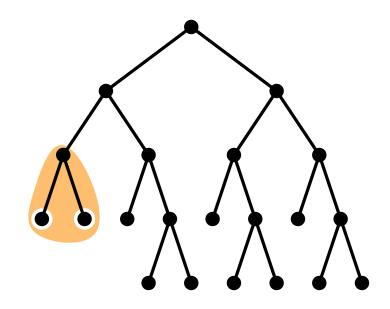


- \blacksquare width at most n-1 and
- height at most

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right
 - Size of subtree := number of vertices

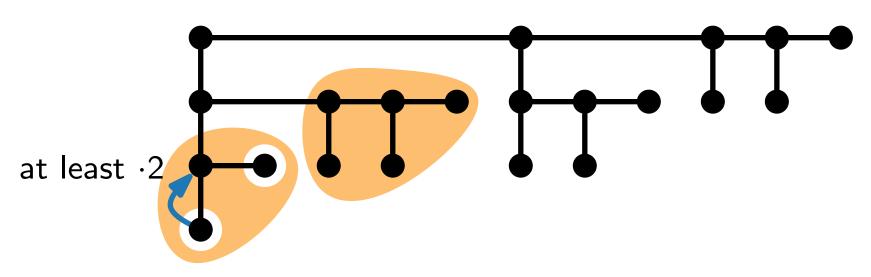


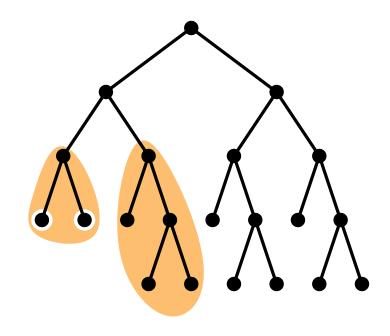


- \blacksquare width at most n-1 and
- height at most

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right
 - Size of subtree := number of vertices

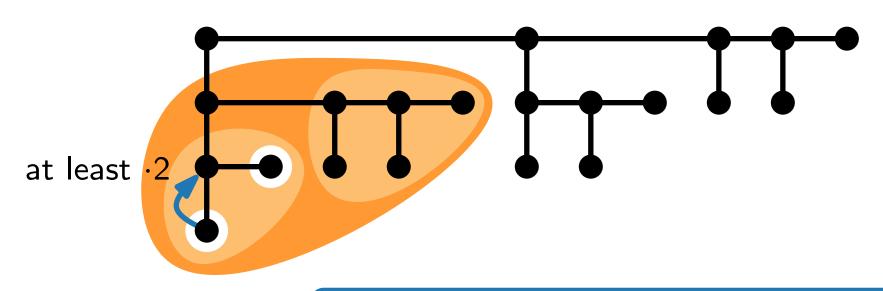


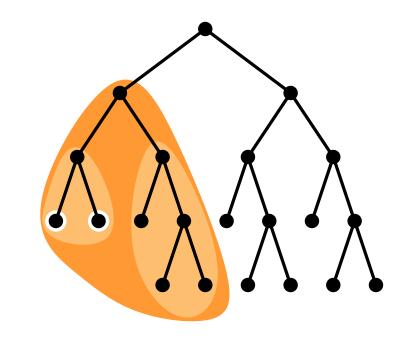


- width at most n-1 and
- height at most

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right
 - Size of subtree := number of vertices

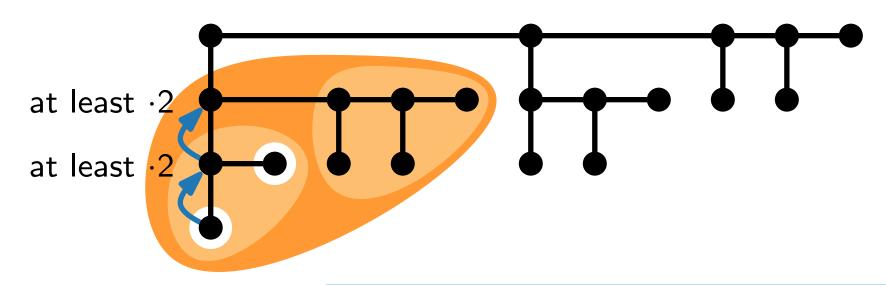


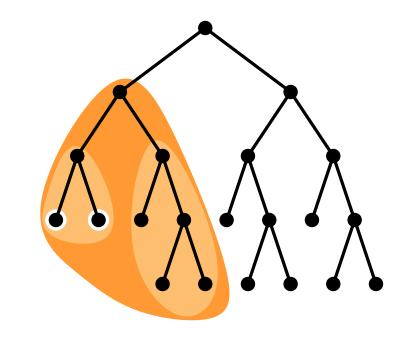


- width at most n-1 and
- height at most

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right
 - Size of subtree := number of vertices

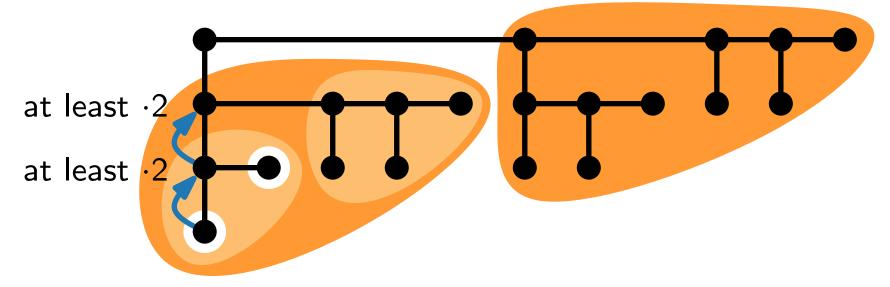


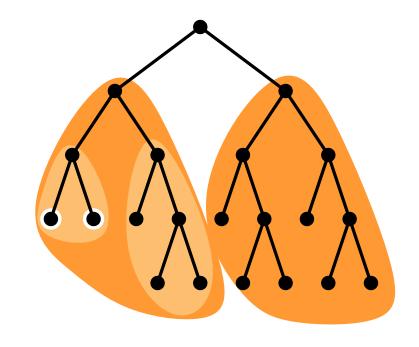


- width at most n-1 and
- height at most

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right
 - Size of subtree := number of vertices

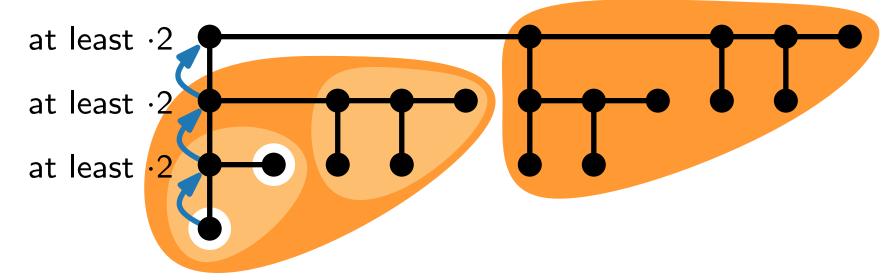


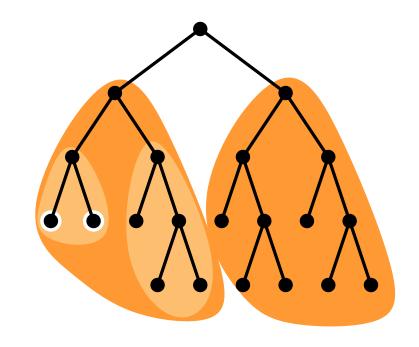


- width at most n-1 and
- height at most

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right
 - Size of subtree := number of vertices

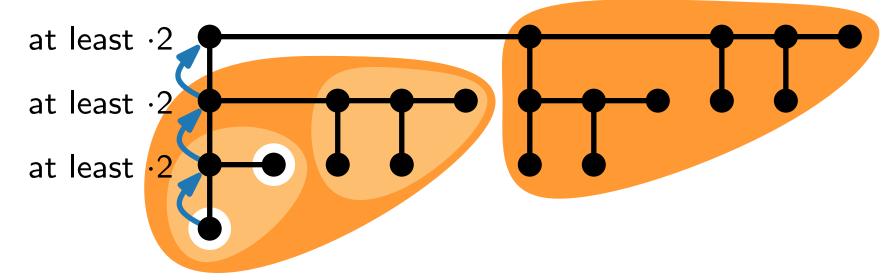


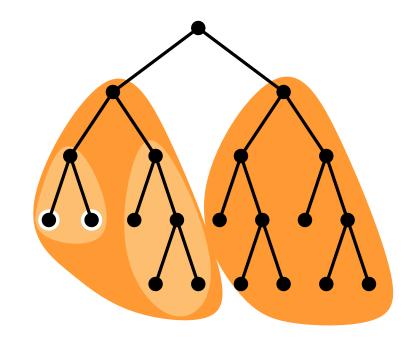


- \blacksquare width at most n-1 and
- height at most

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right
 - Size of subtree := number of vertices

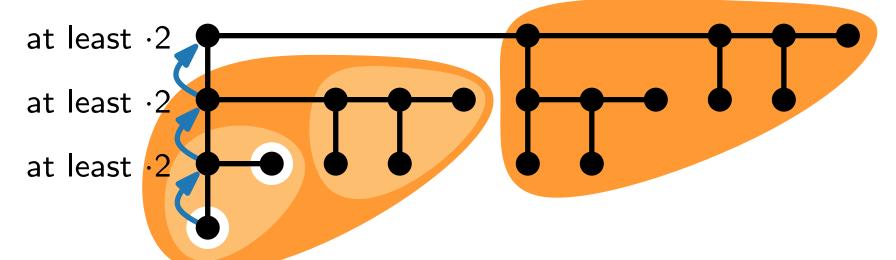


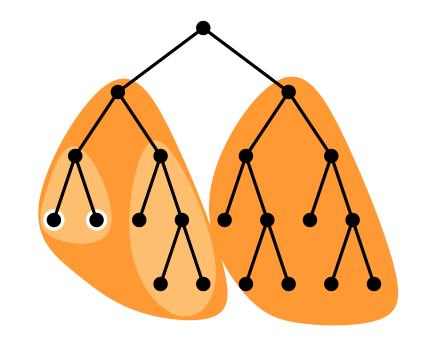


- width at most n-1 and
- \blacksquare height at most $\log n$.

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right
 - Size of subtree := number of vertices





How to implement this in linear time?

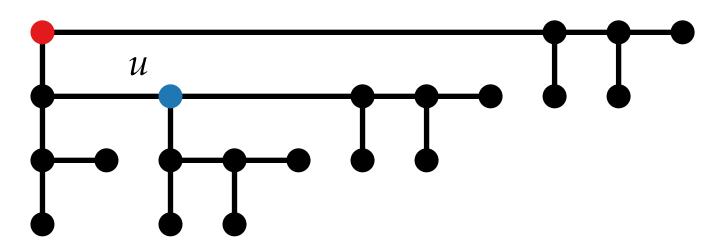
- width at most n-1 and
- \blacksquare height at most $\log n$.

At each node u we store the 5-tuple:

$$u:(x_u,y_u,W_u,H_u,s_u)$$

where:

 \blacksquare x_u, y_u are the x and y coordinates of u

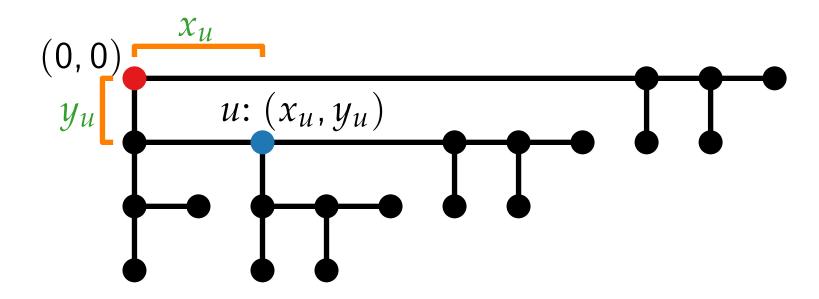


At each node u we store the 5-tuple:

$$u:(x_u,y_u,W_u,H_u,s_u)$$

where:

 $\blacksquare x_u, y_u$ are the x and y coordinates of u

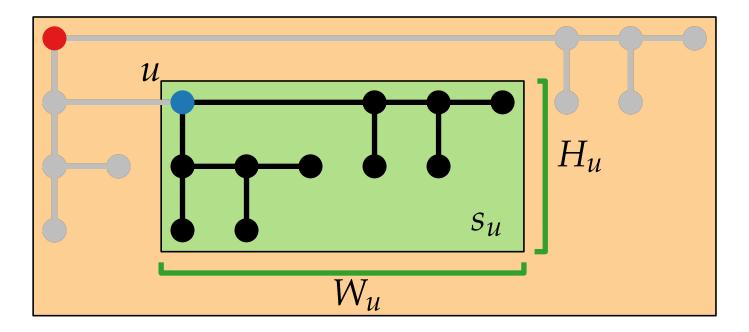


At each node u we store the 5-tuple:

$$u:(x_u,y_u,W_u,H_u,s_u)$$

where:

- \mathbf{x}_u, y_u are the x and y coordinates of u
- lacksquare W_u is the width of the layout of subtree T_u
- \blacksquare H_u is the height of the layout of subtree T_u
- lacksquare s_u is the size of T_u



 \blacksquare Compute in a bottom-up fashion (by a post-order traversal) s_u , W_u and H_u

lacktriangle Compute in a bottom-up fashion (by a post-order traversal) s_u , W_u and H_u

$$u: \quad \bullet s_u = s_v + s_w + 1$$

lacktriangle Compute in a bottom-up fashion (by a post-order traversal) s_u , W_u and H_u

$$u: \bullet s_u = s_v + s_w + 1$$
 $\bullet \text{ if } (s_v < s_w)$
 $H_u = \max(H_v + 1, H_w)$
 $\bullet \text{ else}$
 $H_u = \max(H_w + 1, H_v)$

• $W_{11} = W_{72} + W_{72} + 1$

lacktriangle Compute in a bottom-up fashion (by a post-order traversal) s_u , W_u and H_u

$$u:$$
 • $s_u = s_v + s_w + 1$
• if $(s_v < s_w)$
 $H_u = \max(H_v + 1, H_w)$
• else
 $H_u = \max(H_w + 1, H_v)$

lacktriangle Compute in a top-down fashion (by a pre-order traversal) x_u and y_u

lacktriangle Compute in a top-down fashion (by a pre-order traversal) x_u and y_u

$$r: \quad \bullet \ x_r = 0, \quad y_r = 0$$

lacktriangle Compute in a top-down fashion (by a pre-order traversal) x_u and y_u

r(0,0)

$$r: \quad \bullet \ x_r = 0, \quad y_r = 0$$

u: • For subtree rooted at v and placed below u:

$$x_v = x_u$$

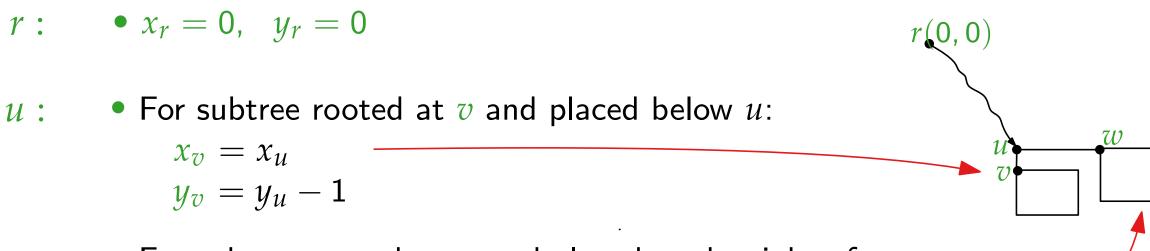
$$y_v = y_u - 1$$

• For subtree rooted at w and placed to the right of u:

$$x_w = x_u + W_v + 1$$

$$y_w = y_u$$

lacktriangle Compute in a top-down fashion (by a pre-order traversal) x_u and y_u



• For subtree rooted at w and placed to the right of u:

$$x_w = x_u + W_v + 1$$

$$y_w = y_u$$

Total time: O(n)

hv-drawing - result (1)

Theorem.

Let T be a binary tree with n vertices. The right-heavy algorithm constructs in O(n) time a drawing Γ of T s.t.:

- \blacksquare Γ is hv-drawing (planar, orthogonal)
- Width is at most n-1
- \blacksquare Height is at most $\log n$
- lacktriangle Area is in $\mathcal{O}(n \log n)$

hv-drawing - result (1)

Theorem.

Let T be a binary tree with n vertices. The right-heavy algorithm constructs in O(n) time a drawing Γ of T s.t.:

- \blacksquare Γ is hv-drawing (planar, orthogonal)
- Width is at most n-1
- \blacksquare Height is at most $\log n$
- lacktriangle Area is in $\mathcal{O}(n \log n)$
- Simply and axially isomorphic subtrees have congruent drawings up to translation

hv-drawing – result (1)

Theorem.

Let T be a binary tree with n vertices. The right-heavy algorithm constructs in O(n) time a drawing Γ of T s.t.:

- \blacksquare Γ is hv-drawing (planar, orthogonal)
- Width is at most n-1
- \blacksquare Height is at most $\log n$
- lacktriangle Area is in $\mathcal{O}(n \log n)$
- Simply and axially isomorphic subtrees have congruent drawings up to translation

Bad aspect ratio $\Omega(n/\log n)$

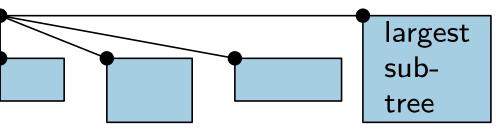
hv-drawing – result (1)

Theorem.

Let T be a binary tree with n vertices. The right-heavy algorithm constructs in O(n) time a drawing Γ of T s.t.:

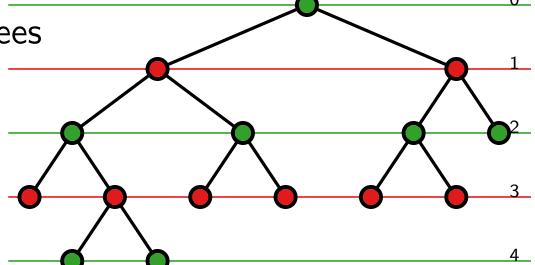
- \blacksquare Γ is hv-drawing (planar, orthogonal)
- Width is at most n-1
- \blacksquare Height is at most $\log n$
- lacktriangle Area is in $\mathcal{O}(n \log n)$
- Simply and axially isomorphic subtrees have congruent drawings up to translation

General rooted tree

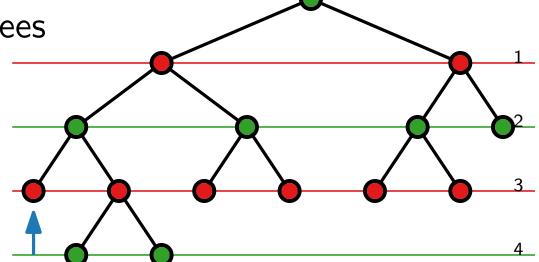


- Recursively compute layout for left and right subtrees
- Apply
 - horizontal combination if vertex is at odd depth
 - vertical combination if vertex is at even depth

- Recursively compute layout for left and right subtrees
- Apply
 - horizontal combination if vertex is at odd depth
 - vertical combination if vertex is at even depth



- Recursively compute layout for left and right subtrees
- Apply
 - horizontal combination if vertex is at odd depth
 - vertical combination if vertex is at even depth



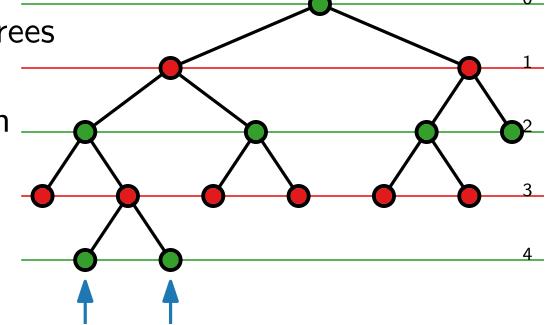
Balanced approach

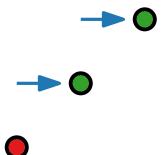
Recursively compute layout for left and right subtrees

Apply

horizontal combination if vertex is at odd depth

vertical combination if vertex is at even depth





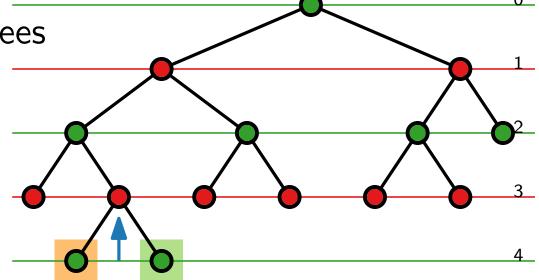
Balanced approach

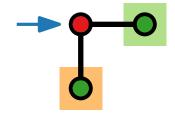
Recursively compute layout for left and right subtrees

Apply

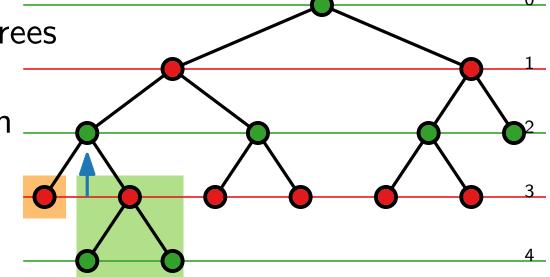
horizontal combination if vertex is at odd depth

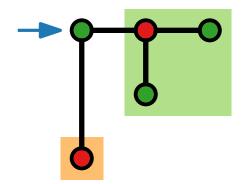
vertical combination if vertex is at even depth



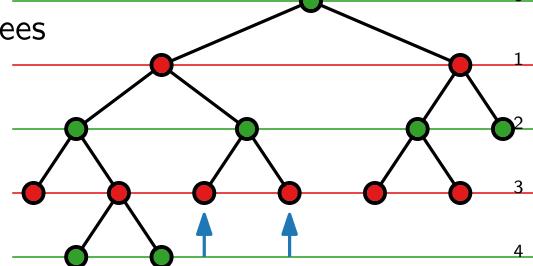


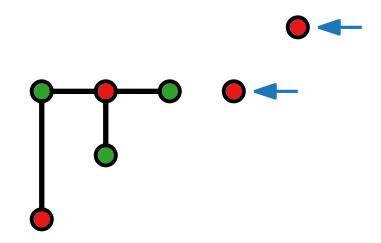
- Recursively compute layout for left and right subtrees
- Apply
 - horizontal combination if vertex is at odd depth
 - vertical combination if vertex is at even depth



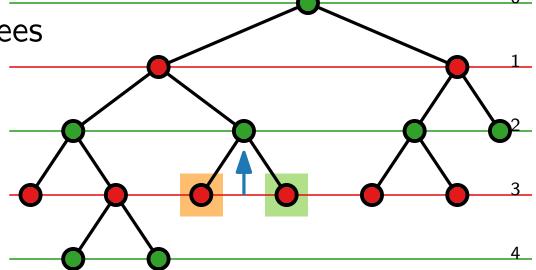


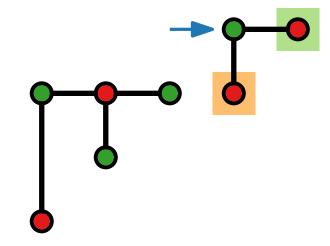
- Recursively compute layout for left and right subtrees
- Apply
 - horizontal combination if vertex is at odd depth
 - vertical combination if vertex is at even depth





- Recursively compute layout for left and right subtrees
- Apply
 - horizontal combination if vertex is at odd depth
 - vertical combination if vertex is at even depth





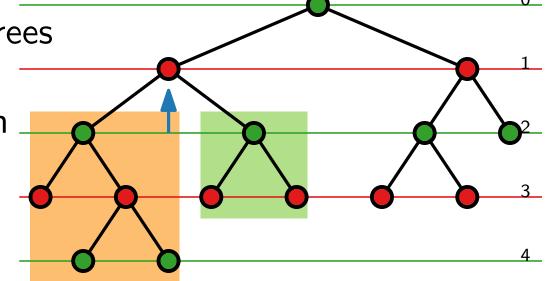
Balanced approach

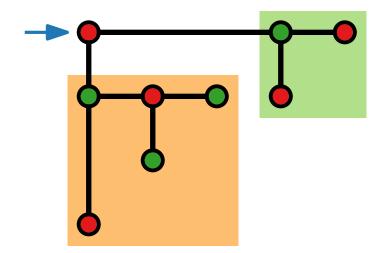
Recursively compute layout for left and right subtrees

Apply

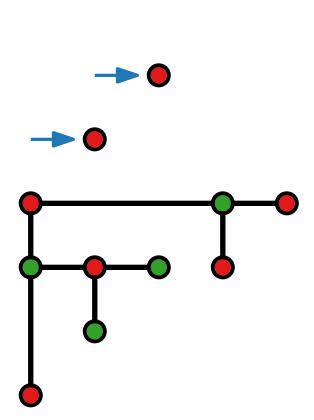
horizontal combination if vertex is at odd depth

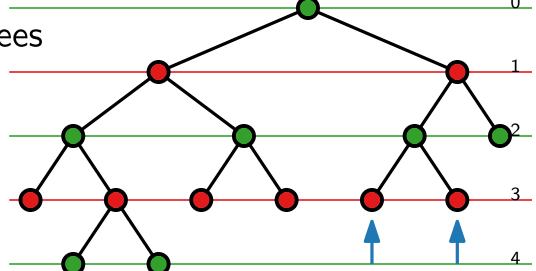
vertical combination if vertex is at even depth



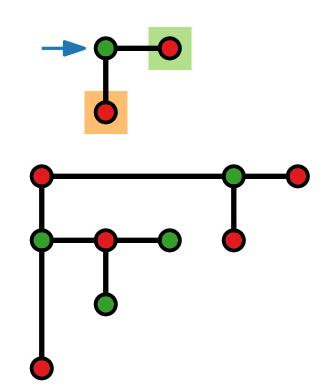


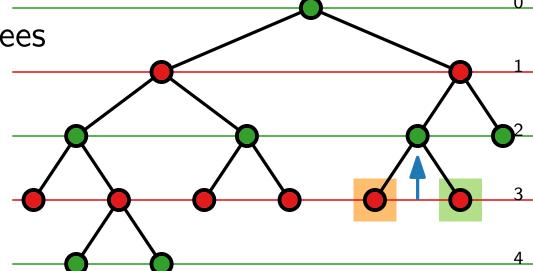
- Recursively compute layout for left and right subtrees
- Apply
 - horizontal combination if vertex is at odd depth
 - vertical combination if vertex is at even depth



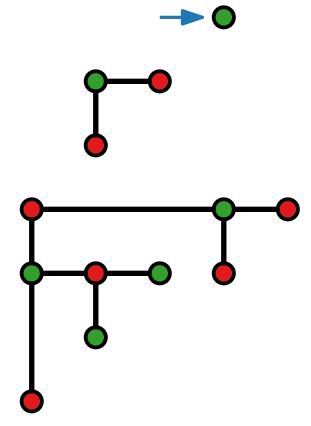


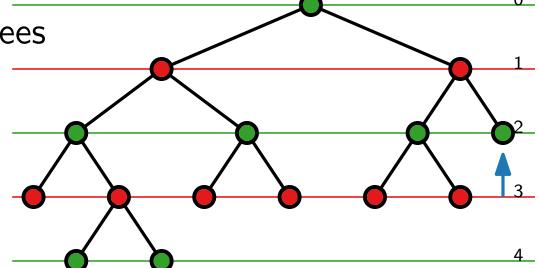
- Recursively compute layout for left and right subtrees
- Apply
 - horizontal combination if vertex is at odd depth
 - vertical combination if vertex is at even depth



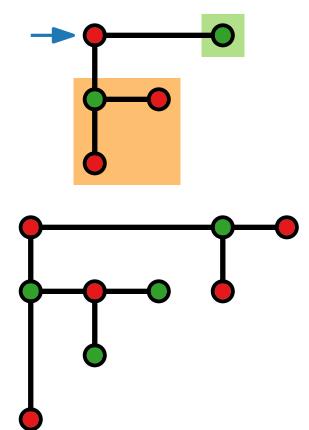


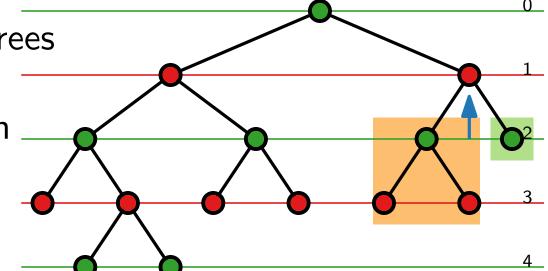
- Recursively compute layout for left and right subtrees
- Apply
 - horizontal combination if vertex is at odd depth
 - vertical combination if vertex is at even depth





- Recursively compute layout for left and right subtrees
- Apply
 - horizontal combination if vertex is at odd depth
 - vertical combination if vertex is at even depth





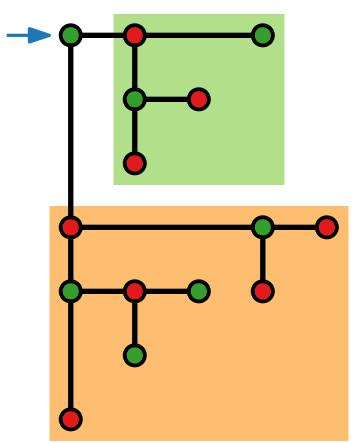
Balanced approach

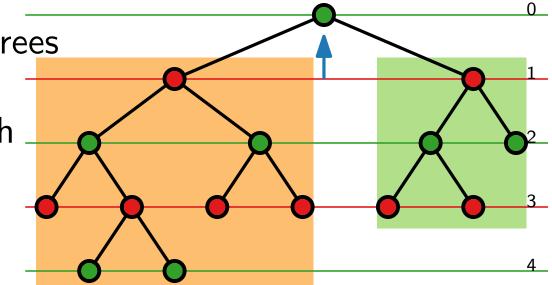
Recursively compute layout for left and right subtrees

Apply

horizontal combination if vertex is at odd depth

vertical combination if vertex is at even depth





Lemma. Let T be a binary tree. The drawing constructed by balanced approach has

- \blacksquare area $\mathcal{O}(n)$ and
- constant aspect ratio

Lemma. Let T be a binary tree. The drawing constructed by balanced approach has

- \blacksquare area $\mathcal{O}(n)$ and
- constant aspect ratio

Base case: h = 0 • $W_0 = 0$, $H_0 = 0$

Lemma. Let T be a binary tree. The drawing constructed by balanced approach has

- lacksquare area $\mathcal{O}(n)$ and
- constant aspect ratio

even height: h = 2k W_h , H_h

Base case: h = 0 • $W_0 = 0$, $H_0 = 0$

Lemma. Let T be a binary tree. The drawing constructed by balanced approach has

- lacksquare area $\mathcal{O}(n)$ and
- constant aspect ratio

Base case: h = 0 • $W_0 = 0$, $H_0 = 0$

even height:
$$h = 2k$$
 W_h , H_h

 \blacksquare compute W_{h+1} , H_{h+1}

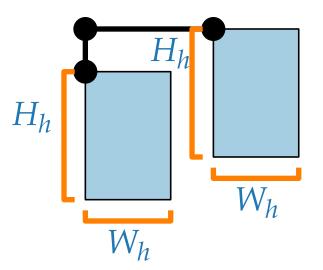
Lemma. Let T be a binary tree. The drawing constructed by balanced approach has

- \blacksquare area $\mathcal{O}(n)$ and
- constant aspect ratio

Base case: h = 0 • $W_0 = 0$, $H_0 = 0$

even height:
$$h = 2k$$
 W_h , H_h

 \blacksquare compute W_{h+1} , H_{h+1}



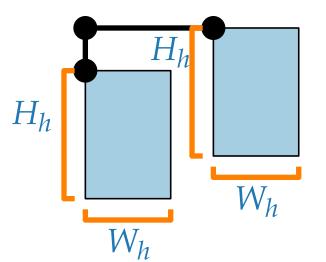
Lemma. Let T be a binary tree. The drawing constructed by balanced approach has

- lacksquare area $\mathcal{O}(n)$ and
- constant aspect ratio

Base case: h = 0 • $W_0 = 0$, $H_0 = 0$

even height:
$$h = 2k$$
 W_h , H_h

lacksquare compute W_{h+1} , H_{h+1}



$$W_{h+1} = 2W_h + 1$$

 $H_{h+1} = H_h + 1$

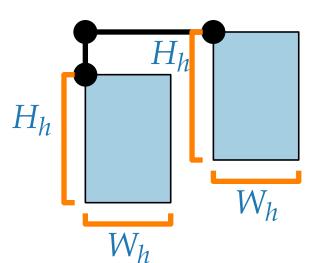
Lemma. Let T be a binary tree. The drawing constructed by balanced approach has

- lacksquare area $\mathcal{O}(n)$ and
- constant aspect ratio

Base case: h = 0 • $W_0 = 0$, $H_0 = 0$

even height:
$$h = 2k$$
 W_h , H_h

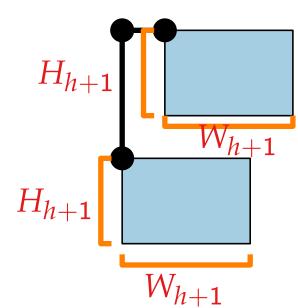
 \blacksquare compute W_{h+1} , H_{h+1}



$$W_{h+1} = 2W_h + 1$$

 $H_{h+1} = H_h + 1$

 \blacksquare compute W_{h+2} , H_{h+2}



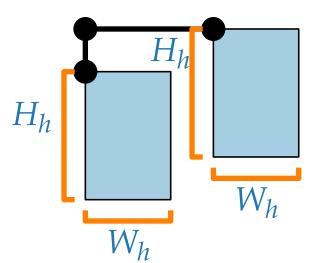
Lemma. Let T be a binary tree. The drawing constructed by balanced approach has

- lacksquare area $\mathcal{O}(n)$ and
- constant aspect ratio

Base case: h = 0 • $W_0 = 0$, $H_0 = 0$

even height:
$$h = 2k$$
 W_h , H_h

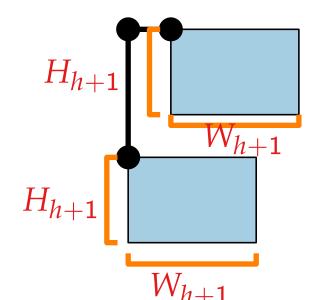
compute W_{h+1} , H_{h+1}



$$W_{h+1} = 2W_h + 1$$

 $H_{h+1} = H_h + 1$

 \blacksquare compute W_{h+2} , H_{h+2}



$$W_{h+2} = W_{h+1} + 1$$

 $H_{h+2} = 2H_{h+1} + 1$

Lemma. Let T be a binary tree. The drawing constructed by balanced approach has

- lacksquare area $\mathcal{O}(n)$ and
- constant aspect ratio

even height:
$$h = 2k$$
 $W_{h+2} = 2W_h + 2$ W_{h} , H_h $W_{h+2} = 2H_h + 3$

Base case:
$$h = 0$$
 • $W_0 = 0$, $H_0 = 0$

Lemma. Let T be a binary tree. The drawing constructed by balanced approach has

- \blacksquare area $\mathcal{O}(n)$ and
- constant aspect ratio

Base case: h = 0 • $W_0 = 0$, $H_0 = 0$

even height:
$$h = 2k$$
 W_h , H_h

$$W_{h+2} = 2W_h + 2$$
 $H_{h+2} = 2H_h + 3$
 $W_h = 2(2^{h/2} - 1)$
 $W_h = 3(2^{h/2} - 1)$
 $W_h = 3\sqrt{n} - 2$
 $W_h = 3\sqrt{n} - 3$

Lemma. Let T be a binary tree. The drawing constructed by balanced approach has

- \blacksquare area $\mathcal{O}(n)$ and
- constant aspect ratio

even height:
$$h = 2k$$
 W_h , H_h

$$W_{h+2} = 2W_h + 2$$

 $H_{h+2} = 2H_h + 3$

$$W_h = 2(2^{h/2} - 1)$$

 $H_h = 3(2^{h/2} - 1)$

$$W_h = 2(2^{h/2} - 1)$$
 $W_h = 2\sqrt{n} - 2$
 $H_h = 3(2^{h/2} - 1)$ $H_h = 3\sqrt{n} - 3$

odd height:
$$h = 2k + 1$$
 W_h , H_h

$$W_{h+2} = 2W_h + 3$$

 $H_{h+2} = 2H_h + 2$

$$W_{h}, H_{h}$$
 $W_{h+2} = 2W_{h} + 3$ $W_{h} = 2\sqrt{2n} - 3$ $W_{h} = \frac{3}{2}\sqrt{2n} - 2$

Base case:
$$h = 0$$
 • $W_0 = 0$, $H_0 = 0$

Base case:
$$h = 1$$
 — $W_1 = 1$, $H_1 = 1$

hv-drawing – result (2)

Theorem.

Let T be a binary tree with n vertices. The balanced algorithm constructs in O(n) time a drawing Γ of T s.t.:

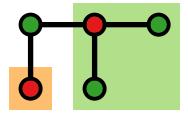
- \blacksquare Γ is hv-drawing (planar, orthogonal)
- Width/Height is at most 2
- lacksquare Area is in $\mathcal{O}(n)$

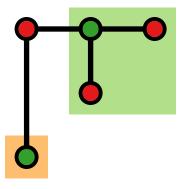
hv-drawing – result (2)

Theorem.

Let T be a binary tree with n vertices. The balanced algorithm constructs in O(n) time a drawing Γ of T s.t.:

- \blacksquare Γ is hv-drawing (planar, orthogonal)
- Width/Height is at most 2
- Area is in $\mathcal{O}(n)$
- Isomorphic subtrees have congruent drawings up to translation only if the roots are both on odd or both on even depth.

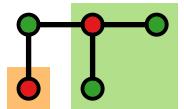




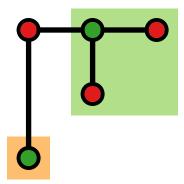
hv-drawing – result (2)

Theorem.

Let T be a binary tree with n vertices. The balanced algorithm constructs in O(n) time a drawing Γ of T s.t.:



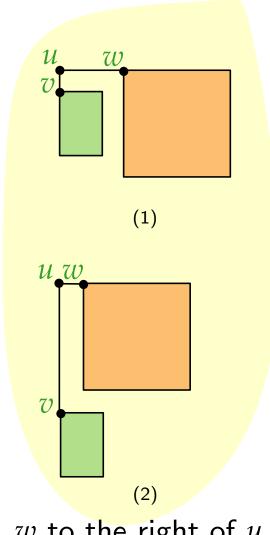
- \blacksquare Γ is hv-drawing (planar, orthogonal)
- Width/Height is at most 2
- lacksquare Area is in $\mathcal{O}(n)$
- Isomorphic subtrees have congruent drawings up to translation only if the roots are both on odd or both on even depth.



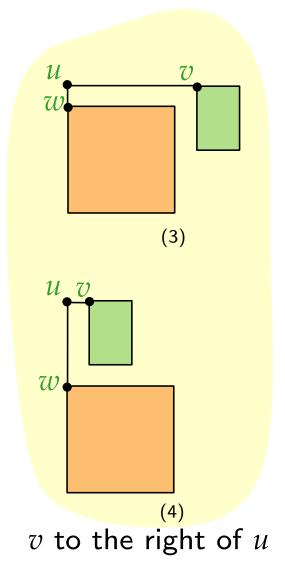
Optimal area?

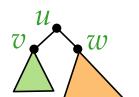
- Not with divide & conquer approach, but
- can be computed with Dynamic Programming.

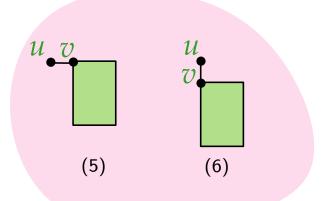
■ Possible arrangements:



w to the right of u







u has only one child

Algorithm Optimum_hv-layout

Input: Vertex v

Output: A list with all possible hv-layouts for T_v

If $h(T_v) == 0$). —v is the only vertex in the tree return trivial single vertex hv-layout

else

- 1. Build lists L_1 and L_2 of all possible hv-layouts of T_u^L and T_u^R , resp.
- 2. Combine L_1 and L_2 (by applying all possible arrangements) to build list L of all possible hv-layouts for T_v
- 3. return L

Algorithm Optimum_hv-layout

Input: Vertex v

Output: A list with all possible hv-layouts for T_v

If $h(T_v) == 0$). —v is the only vertex in the tree return trivial single vertex hv-layout

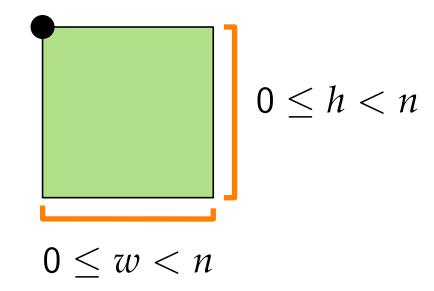
else

- 1. Build lists L_1 and L_2 of all possible hv-layouts of T_u^L and T_u^R , resp.
- 2. Combine L_1 and L_2 (by applying all possible arrangements) to build list L of all possible hv-layouts for T_v
- 3. return L
- From the list at the root of the tree, select the optimum hv-layout. Optimum w.r.t.: area, perimeter, height, width, ...

Obervation 1: The number of possible hv-layouts is exponential

Obervation 1: The number of possible hv-layouts is exponential

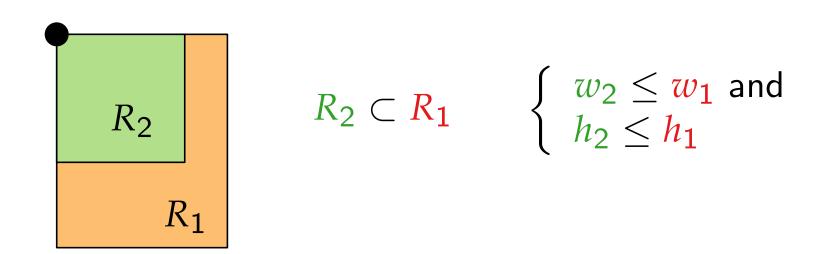
Obervation 2: The number of possible enclosing rectangles is at most n^2 [n possible different heights and n possible different widths]



Obervation 1: The number of possible hv-layouts is exponential

Obervation 2: The number of possible enclosing rectangles is at most n^2 [n possible different heights and n possible different widths]

Obervation 3: We only need to keep the enclosing rectangles that are not fully covered by other enclosing rectangles. We refer to them as *atoms*.



Obervation 1: The number of possible hv-layouts is exponential

Obervation 2: The number of possible enclosing rectangles is at most n^2 [n possible different heights and n possible different widths]

Obervation 3: We only need to keep the enclosing rectangles that are not fully covered by other enclosing rectangles. We refer to them as *atoms*.

Lemma: For an n-vertex binary tree we have at most n-1 atoms.

Obervation 1: The number of possible hv-layouts is exponential

Obervation 2: The number of possible enclosing rectangles is at most n^2 [n possible different heights and n possible different widths]

Obervation 3: We only need to keep the enclosing rectangles that are not fully covered by other enclosing rectangles. We refer to them as *atoms*.

Lemma: For an n-vertex binary tree we have at most n-1 atoms.

Proof: Observe that:

- Let each atom be of the form $[w \times h]$.
- There is only one atom for each w, $0 \le w \le n-1$.

- 1. Simple implementation:
 - Combining the n^2 rectangles in each of L_1 and L_2 to get a list of n^4 rectangles. $\Rightarrow O(n^4)$ time
 - Remove duplicate rectangles $\Rightarrow O(n^4)$ time
 - Repeat for each internal tree node $\Rightarrow O(n \cdot n^4) = O(n^5)$ total time

- 1. Simple implementation:
 - Combining the n^2 rectangles in each of L_1 and L_2 to get a list of n^4 rectangles. $\Rightarrow O(n^4)$ time
 - Remove duplicate rectangles $\Rightarrow O(n^4)$ time
 - Repeat for each internal tree node $\Rightarrow O(n \cdot n^4) = O(n^5)$ total time
- 2. Implementation based on "atom-only" lists [Observation-3]
 - Combine the n atoms in each of L_1 and L_2 and remove duplicates $\Rightarrow O(n^2)$ time
 - Repeat for each internal tree node $\Rightarrow O(n \cdot n^2) = O(n^3)$ total time

Time Analysis:

1. Simple implementation:

- Combining the n^2 rectangles in each of L_1 and L_2 to get a list of n^4 rectangles. $\Rightarrow O(n^4)$ time
- Remove duplicate rectangles $\Rightarrow O(n^4)$ time
- Repeat for each internal tree node $\Rightarrow O(n \cdot n^4) = O(n^5)$ total time

2. Implementation based on "atom-only" lists [Observation-3]

- Combine the n atoms in each of L_1 and L_2 and remove duplicates $\Rightarrow O(n^2)$ time
- Repeat for each internal tree node $\Rightarrow O(n \cdot n^2) = O(n^3)$ total time

3. Fast "atom-based" implementation

- Combine the n atoms in each of L_1 and L_2 and remove duplicates by a "merge-like" operation $\Rightarrow O(n)$ time
- Repeat for each internal tree node $\Rightarrow O(n \cdot n) = O(n^2)$ total time

- 2. Implementation based on "atom-only" lists [Observation-3]
 - Combine the n atoms in each of L_1 and L_2 and remove duplicates $\Rightarrow O(n^2)$ time
 - Repeat for each internal tree node $\Rightarrow O(n \cdot n^2) = O(n^3)$ total time

Time Analysis:

- 2. Implementation based on "atom-only" lists [Observation-3]
 - Combine the n atoms in each of L_1 and L_2 and remove duplicates $\Rightarrow O(n^2)$ time
 - Repeat for each internal tree node $\Rightarrow O(n \cdot n^2) = O(n^3)$ total time

```
atoms: array of length n
atoms[i] = atom with length i
```

 \blacksquare for each combination of L_1 and L_2 update array of atoms

Time Analysis:

- 2. Implementation based on "atom-only" lists [Observation-3]
 - Combine the n atoms in each of L_1 and L_2 and remove duplicates $\Rightarrow O(n^2)$ time
 - Repeat for each internal tree node $\Rightarrow O(n \cdot n^2) = O(n^3)$ total time

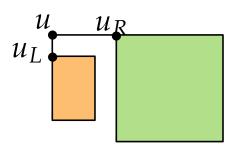
```
atoms: array of length n
atoms[i] = atom with length i
```

 \blacksquare for each combination of L_1 and L_2 update array of atoms

```
Obervation: width is increasing w_i < w_j height is decreasing h_i > h_j
```

- 3. Fast "atom-based" implementation
 - Combine the n atoms in each of L_1 and L_2 and remove duplicates by a "merge-like" operation $\Rightarrow O(n)$ time
 - Repeat for each internal tree node $\Rightarrow O(n \cdot n) = O(n^2)$ total time

- 3. Fast "atom-based" implementation
 - Combine the n atoms in each of L_1 and L_2 and remove duplicates by a "merge-like" operation $\Rightarrow O(n)$ time
 - Repeat for each internal tree node $\Rightarrow O(n \cdot n) = O(n^2)$ total time



$$a_L$$
: $\{p_0, \ldots, p_k\}$, $p_i = (w_i, h_i)$
 a_R : $\{q_0, \ldots, q_\ell\}$, $q_j = (w'_j, h'_j)$

Time Analysis:

- 3. Fast "atom-based" implementation
 - Combine the n atoms in each of L_1 and L_2 and remove duplicates by a "merge-like" operation $\Rightarrow O(n)$ time
 - Repeat for each internal tree node $\Rightarrow O(n \cdot n) = O(n^2)$ total time



$$a_L: \{p_0, \dots, p_k\}, p_i = (w_i, h_i)$$

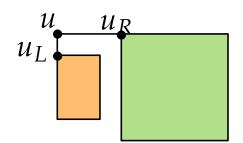
$$a_R: \{q_0, \dots, q_\ell\}, q_j = (w'_j, h'_j)$$

combination $c(p_i, q_i)$:

- $W = w_i + w'_j + 1$
- $\blacksquare H = \max\{h_i + 1, h_j'\}$

Time Analysis:

- 3. Fast "atom-based" implementation
 - Combine the n atoms in each of L_1 and L_2 and remove duplicates by a "merge-like" operation $\Rightarrow O(n)$ time
 - Repeat for each internal tree node $\Rightarrow O(n \cdot n) = O(n^2)$ total time



$$a_L: \{p_0, \dots, p_k\}, p_i = (w_i, h_i)$$

$$a_R: \{q_0, \dots, q_\ell\}, q_j = (w'_j, h'_j)$$

combination $c(p_i, q_i)$:

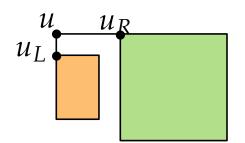
- $W = w_i + w'_j + 1$
- $\blacksquare H = \max\{h_i + 1, h_j'\}$

For fixed
$$p_i = (w_i, h_i)$$

W is increasing

Time Analysis:

- 3. Fast "atom-based" implementation
 - Combine the n atoms in each of L_1 and L_2 and remove duplicates by a "merge-like" operation $\Rightarrow O(n)$ time
 - Repeat for each internal tree node $\Rightarrow O(n \cdot n) = O(n^2)$ total time



$$a_L$$
: $\{p_0, \ldots, p_k\}$, $p_i = (w_i, h_i)$
 a_R : $\{q_0, \ldots, q_\ell\}$, $q_j = (w'_j, h'_j)$

combination $c(p_i, q_i)$:

- $W = w_i + w'_j + 1$
- $\blacksquare H = \max\{h_i + 1, h_j'\}$

For fixed
$$p_i = (w_i, h_i)$$

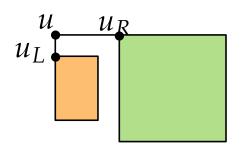
W is increasing

$$H = \begin{cases} h'_j, & \text{for } h'_j > h_i + 1 \\ h_i, & \text{for } h'_j \leq h_i + 1 \end{cases}$$

enclosed !!)

Time Analysis:

- 3. Fast "atom-based" implementation
 - Combine the n atoms in each of L_1 and L_2 and remove duplicates by a "merge-like" operation $\Rightarrow O(n)$ time
 - Repeat for each internal tree node $\Rightarrow O(n \cdot n) = O(n^2)$ total time



$$a_L$$
: $\{p_0, \ldots, p_k\}$, $p_i = (w_i, h_i)$
 a_R : $\{q_0, \ldots, q_\ell\}$, $q_j = (w'_j, h'_j)$

combination $c(p_i, q_i)$:

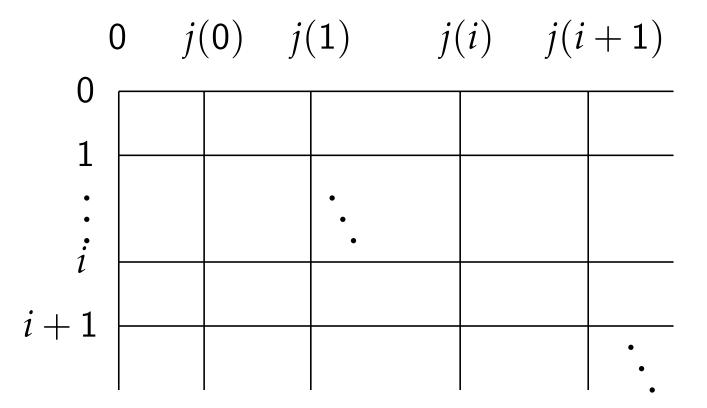
- $W = w_i + w'_j + 1$
- $\blacksquare H = \max\{h_i + 1, h_j'\}$

For fixed
$$p_i = (w_i, h_i)$$

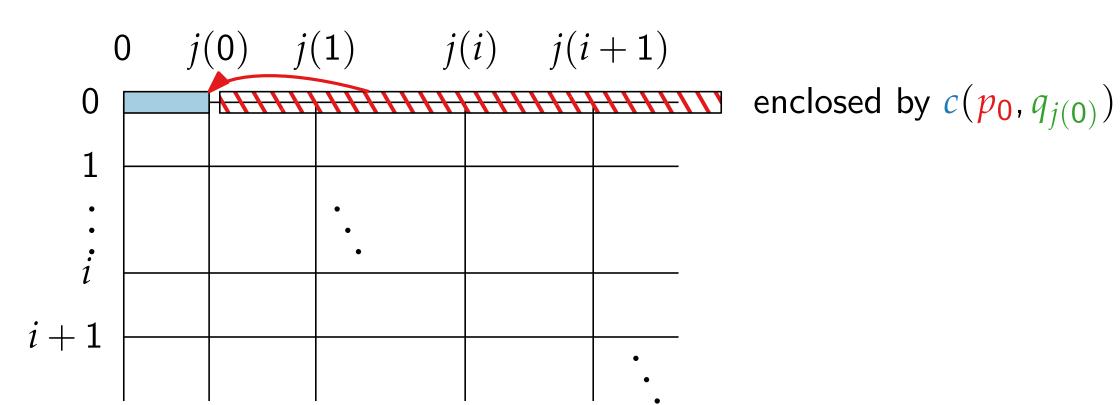
- There exists smallest j(i) s.t. $h'_{j(i)} \leq h_i + 1$
- **a** atoms defined only for $j \leq j(i)$
- j(i) is increasing
- $c(p_{i'>i}, q_j)$ enclosed by $c(p_i, q_j)$ for $j \leq j(i)$

- 3. Fast "atom-based" implementation
 - Combine the n atoms in each of L_1 and L_2 and remove duplicates by a "merge-like" operation $\Rightarrow O(n)$ time
 - Repeat for each internal tree node $\Rightarrow O(n \cdot n) = O(n^2)$ total time

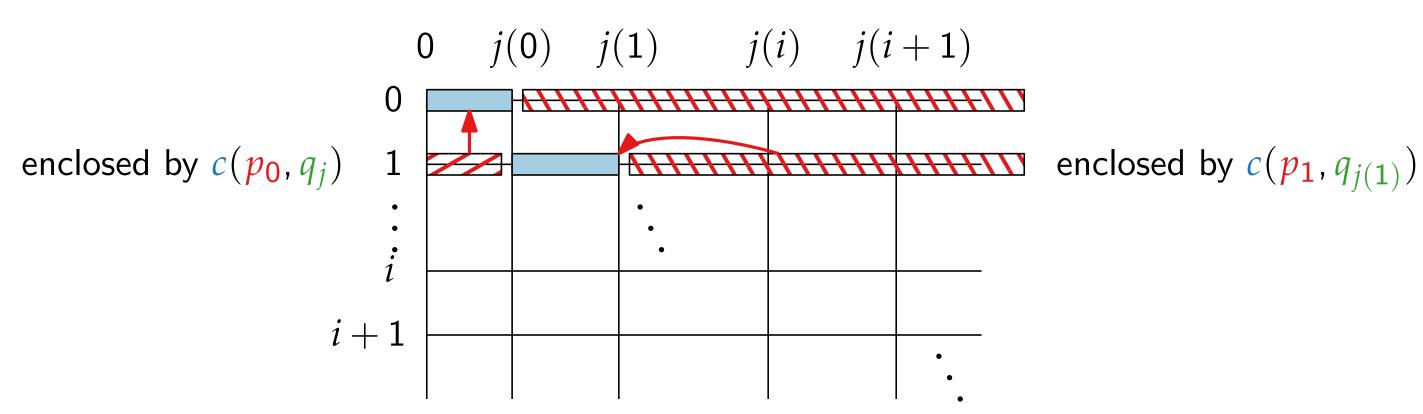
- 3. Fast "atom-based" implementation
 - Combine the n atoms in each of L_1 and L_2 and remove duplicates by a "merge-like" operation $\Rightarrow O(n)$ time
 - Repeat for each internal tree node $\Rightarrow O(n \cdot n) = O(n^2)$ total time



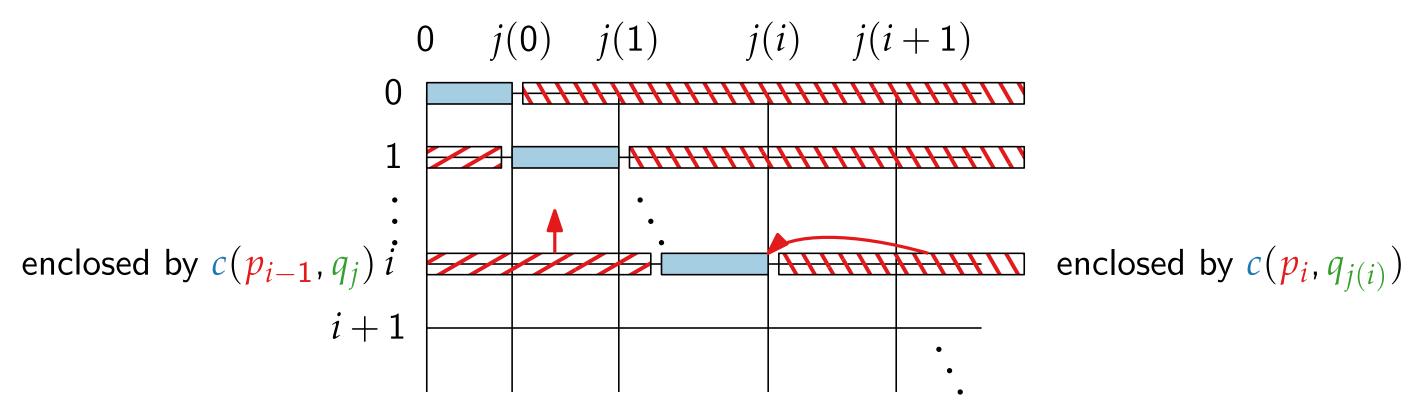
- 3. Fast "atom-based" implementation
 - Combine the n atoms in each of L_1 and L_2 and remove duplicates by a "merge-like" operation $\Rightarrow O(n)$ time
 - Repeat for each internal tree node $\Rightarrow O(n \cdot n) = O(n^2)$ total time



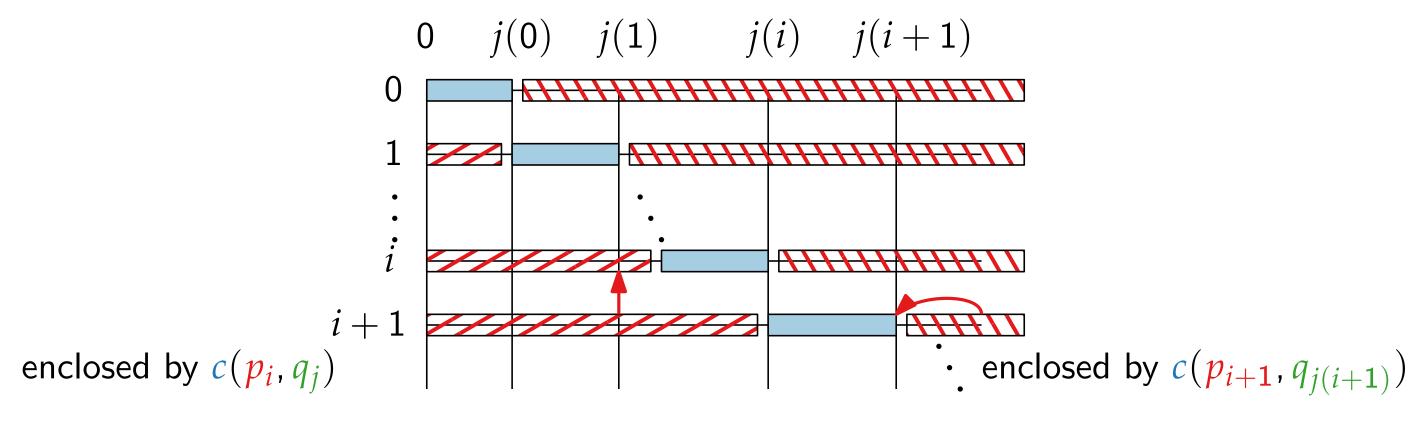
- 3. Fast "atom-based" implementation
 - Combine the n atoms in each of L_1 and L_2 and remove duplicates by a "merge-like" operation $\Rightarrow O(n)$ time
 - Repeat for each internal tree node $\Rightarrow O(n \cdot n) = O(n^2)$ total time



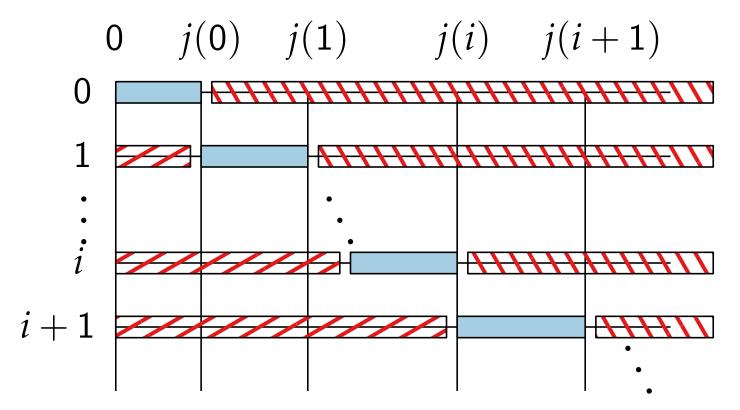
- 3. Fast "atom-based" implementation
 - Combine the n atoms in each of L_1 and L_2 and remove duplicates by a "merge-like" operation $\Rightarrow O(n)$ time
 - Repeat for each internal tree node $\Rightarrow O(n \cdot n) = O(n^2)$ total time



- 3. Fast "atom-based" implementation
 - Combine the n atoms in each of L_1 and L_2 and remove duplicates by a "merge-like" operation $\Rightarrow O(n)$ time
 - Repeat for each internal tree node $\Rightarrow O(n \cdot n) = O(n^2)$ total time



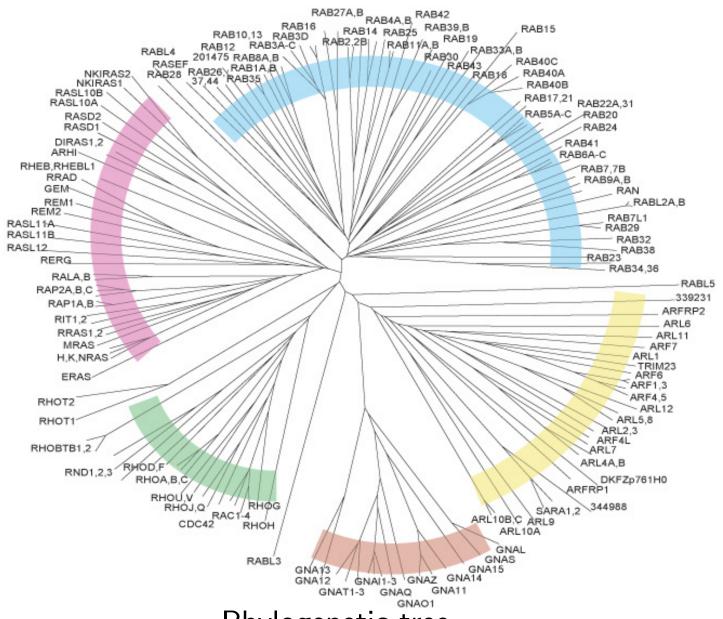
- 3. Fast "atom-based" implementation
 - Combine the n atoms in each of L_1 and L_2 and remove duplicates by a "merge-like" operation $\Rightarrow O(n)$ time
 - Repeat for each internal tree node $\Rightarrow O(n \cdot n) = O(n^2)$ total time



- 3. Fast "atom-based" implementation
 - Combine the n atoms in each of L_1 and L_2 and remove duplicates by a "merge-like" operation $\Rightarrow O(n)$ time
 - Repeat for each internal tree node $\Rightarrow O(n \cdot n) = O(n^2)$ total time

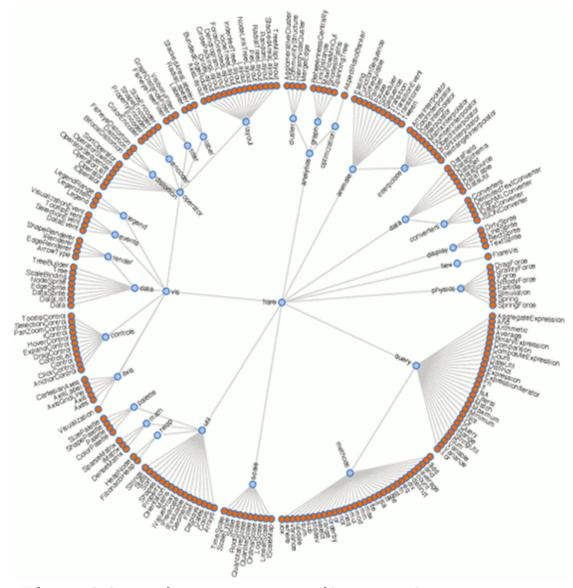
```
combine1(atoms a_L, atoms a_R)
   i \leftarrow 0
   while i \leq k and j \leq \ell do
       compute combination
       if h_i' > h_i + 1 then
       else
        i \leftarrow i + 1
```

Radial layout – applications

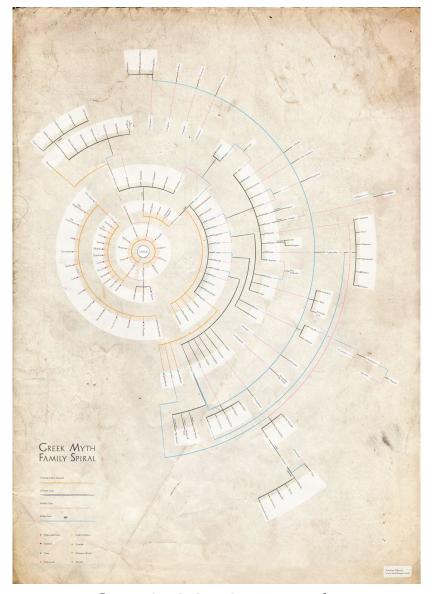


Phylogenetic tree by Colicelli, ScienceSignaling, 2004

Radial layout – applications

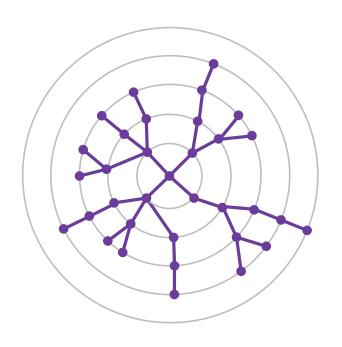


Flare Visualization Toolkit code structure by Heer, Bostock and Ogievetsky, 2010



Greek Myth Family by Ribecca, 2011

Radial layout – drawing style



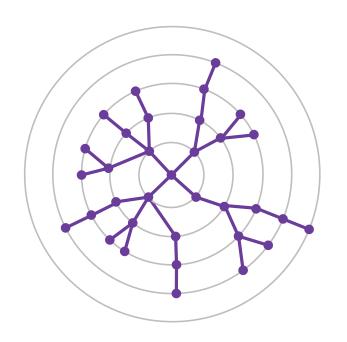
Drawing conventions

- Vertices lie on circular layers according to their depth
- Drawing is planar

Drawing aesthetics

Distribution of the vertices

Radial layout – drawing style



Drawing conventions

- Vertices lie on circular layers according to their depth
- Drawing is planar

Drawing aesthetics

Distribution of the vertices

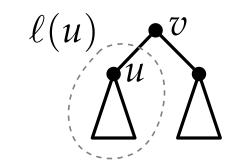
How may an algorithm optimise the distribution of the vertices?

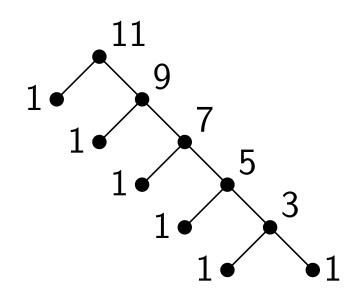
Radial layout – algorithm attempt

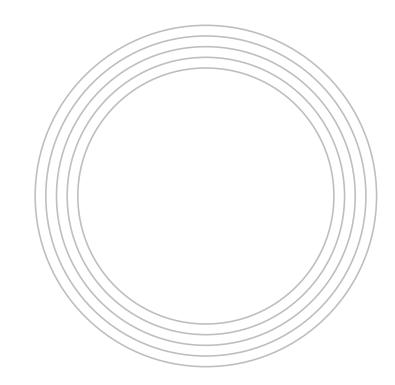
Idea

■ Angle corresponding to size $\ell(u)$ of T(u):

$$au_u = rac{\ell(u)}{\ell(v) - 1} au_v$$





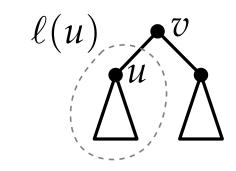


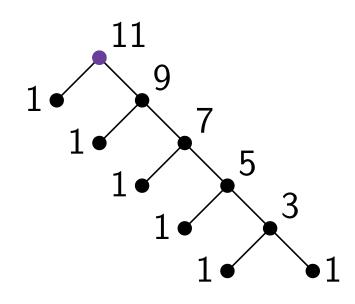
Radial layout – algorithm attempt

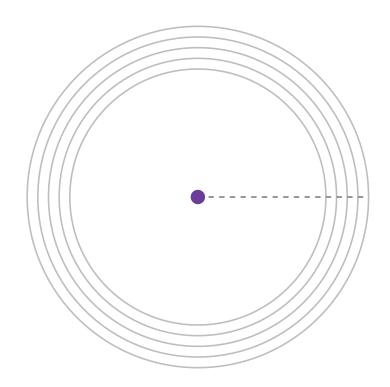
Idea

■ Angle corresponding to size $\ell(u)$ of T(u):

$$au_u = rac{\ell(u)}{\ell(v) - 1} au_v$$

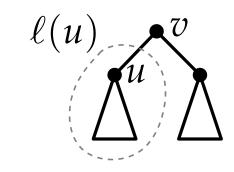


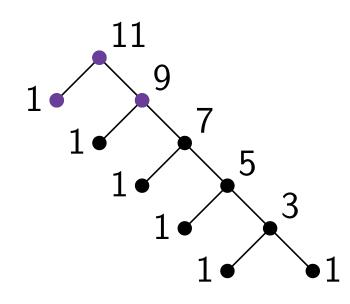


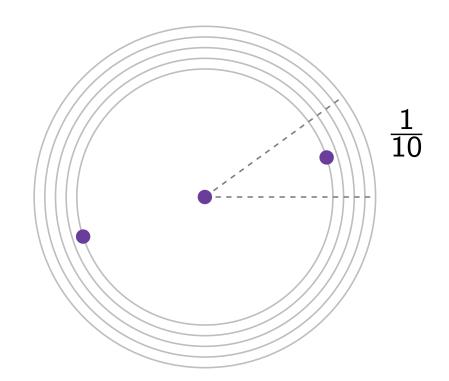


Idea

$$au_u = rac{\ell(u)}{\ell(v) - 1} au_v$$

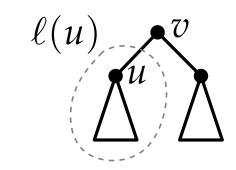


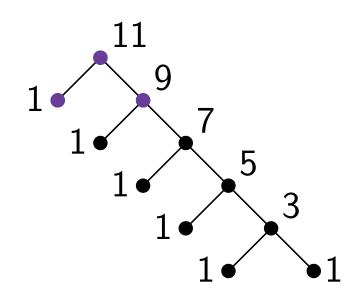


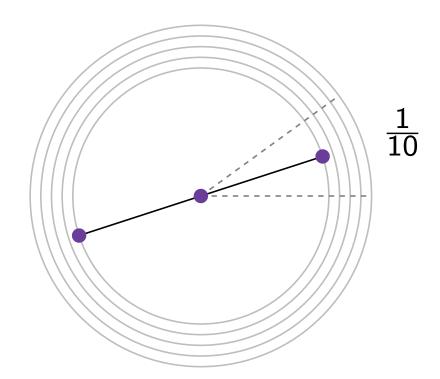


Idea

$$\tau_u = \frac{\ell(u)}{\ell(v) - 1} \tau_v$$

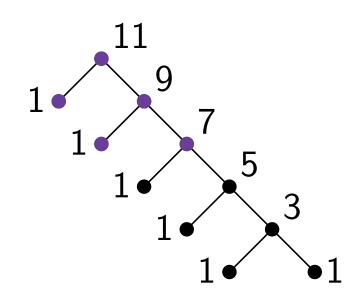


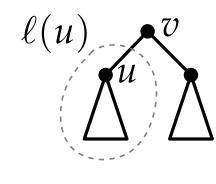


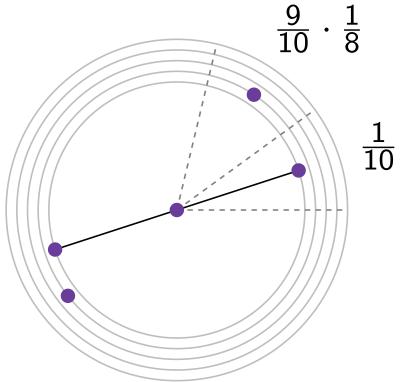


Idea

$$au_u = rac{\ell(u)}{\ell(v) - 1} au_v$$

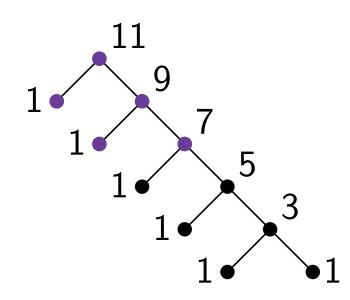


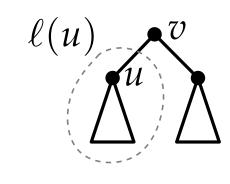


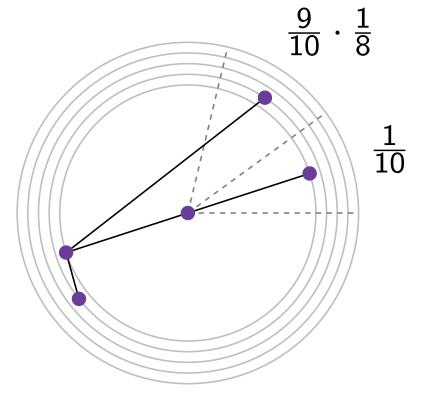


Idea

$$au_u = rac{\ell(u)}{\ell(v) - 1} au_v$$



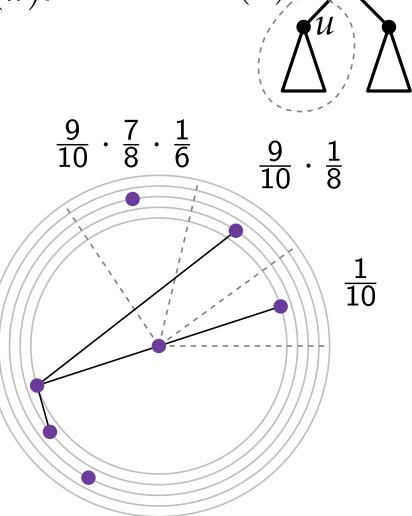




Idea

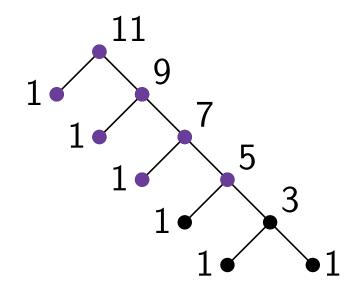
$$au_u = rac{\ell(u)}{\ell(v) - 1} au_v$$

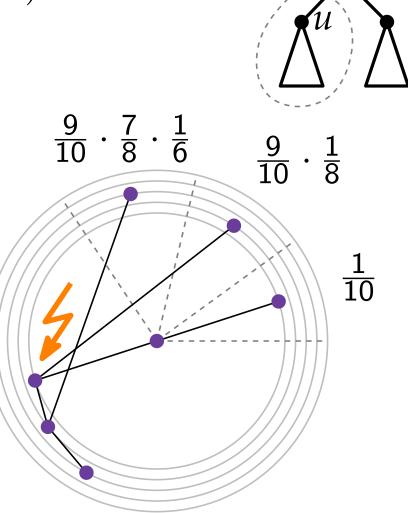


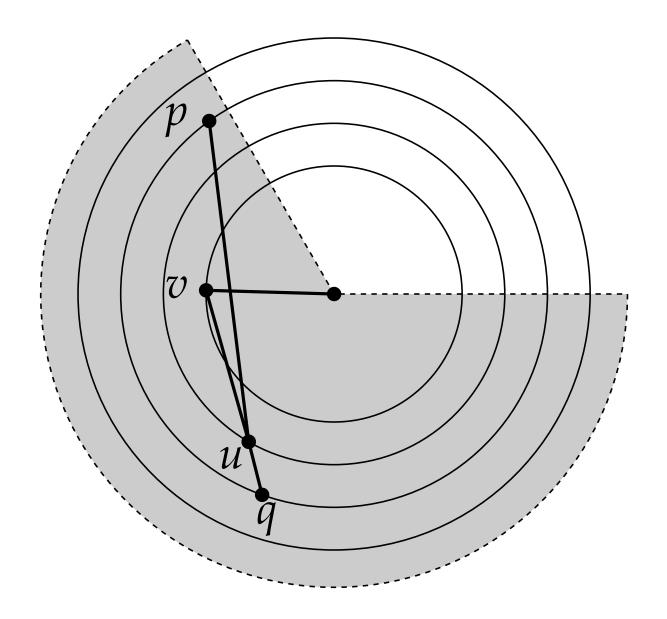


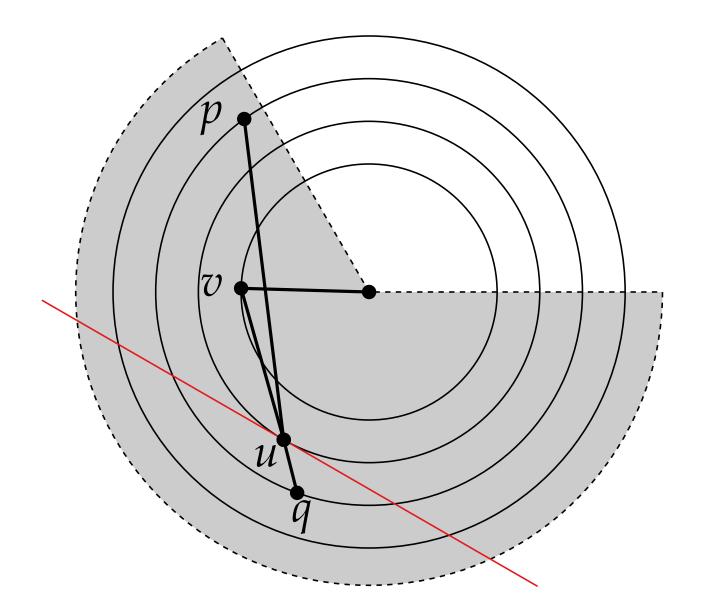
Idea

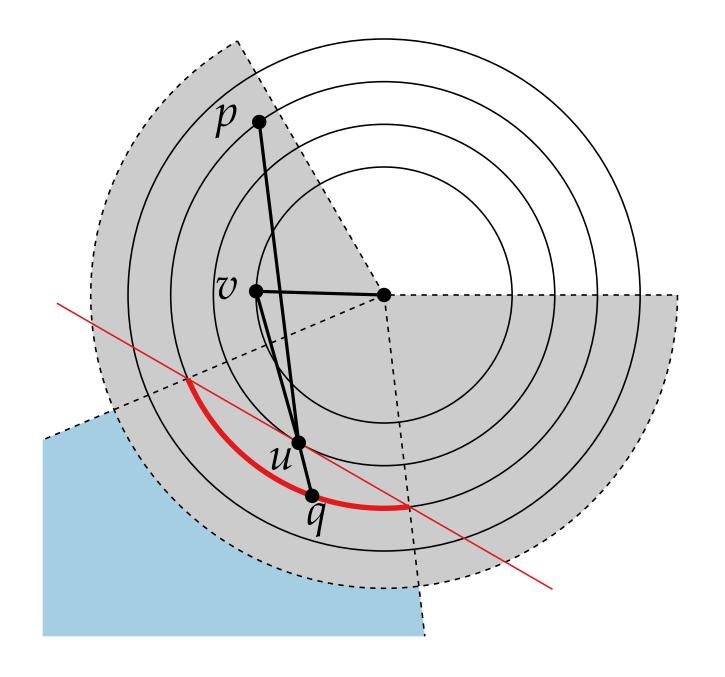
$$au_u = rac{\ell(u)}{\ell(v) - 1} au_v$$

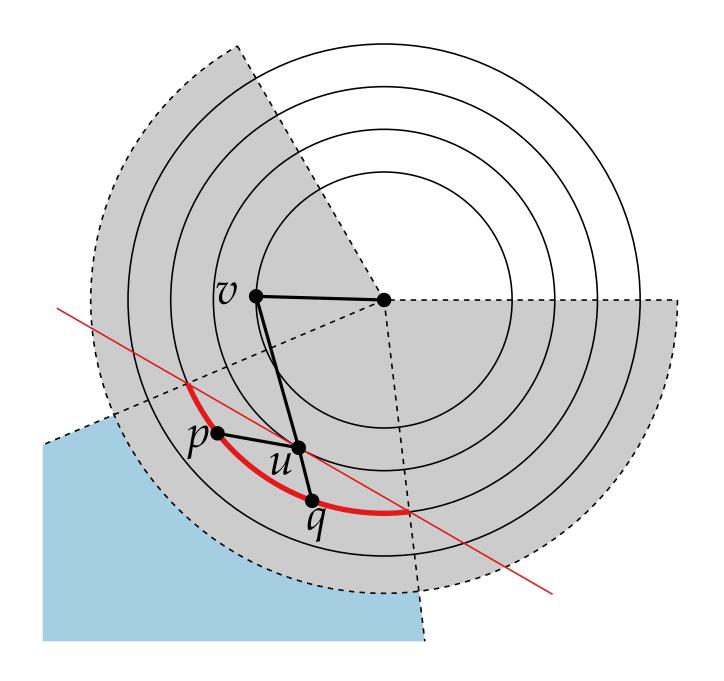


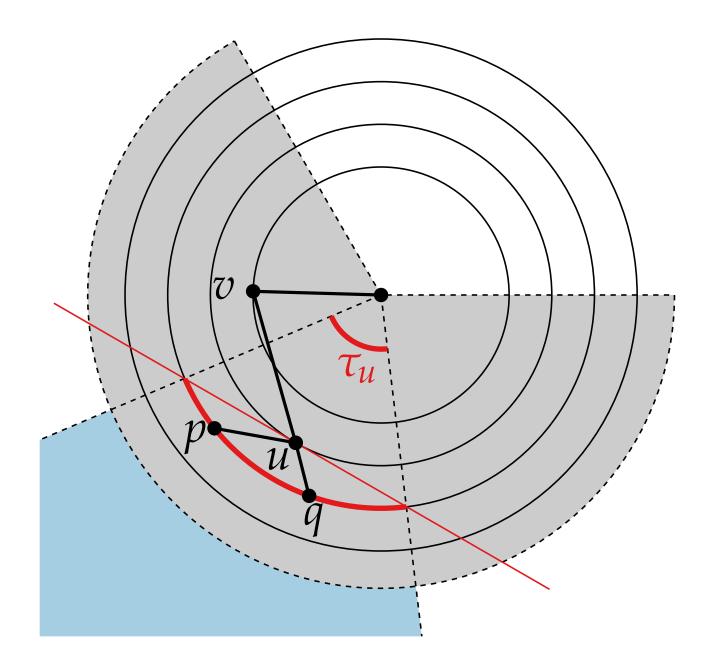




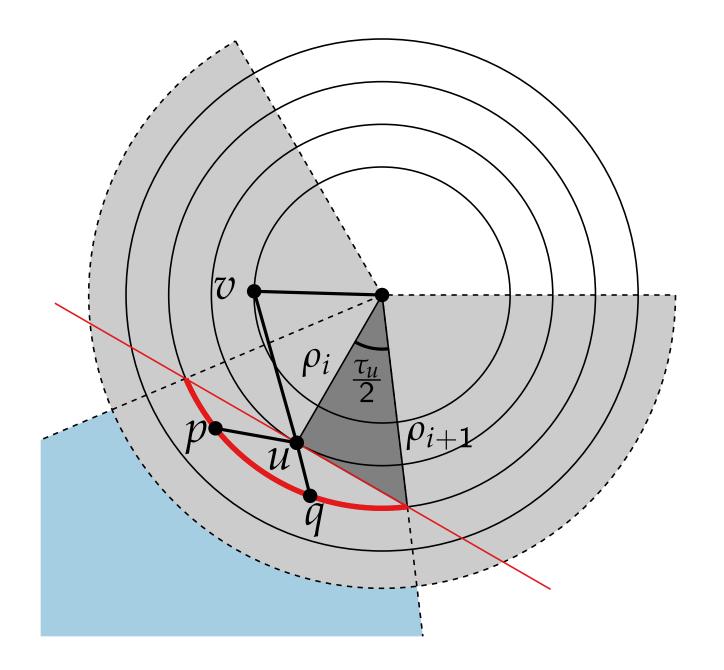






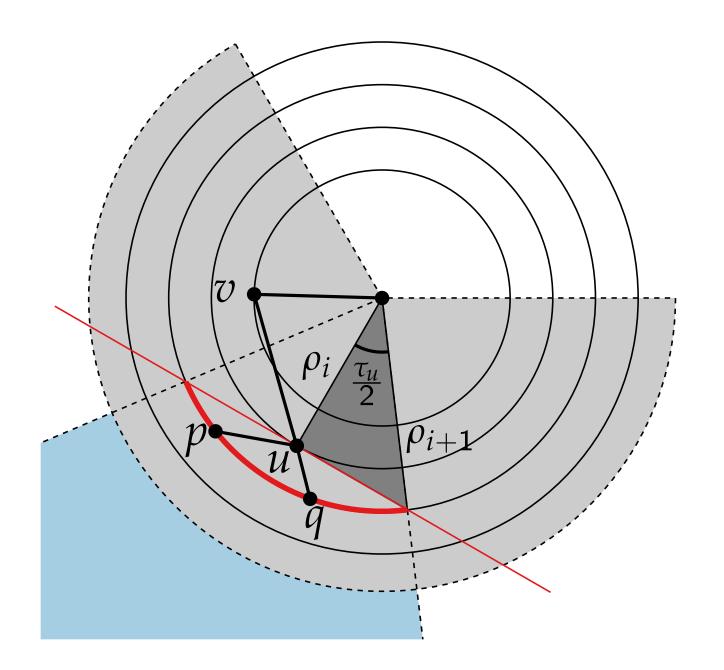


 τ_u – angle of the wedge corresponding to vertex u

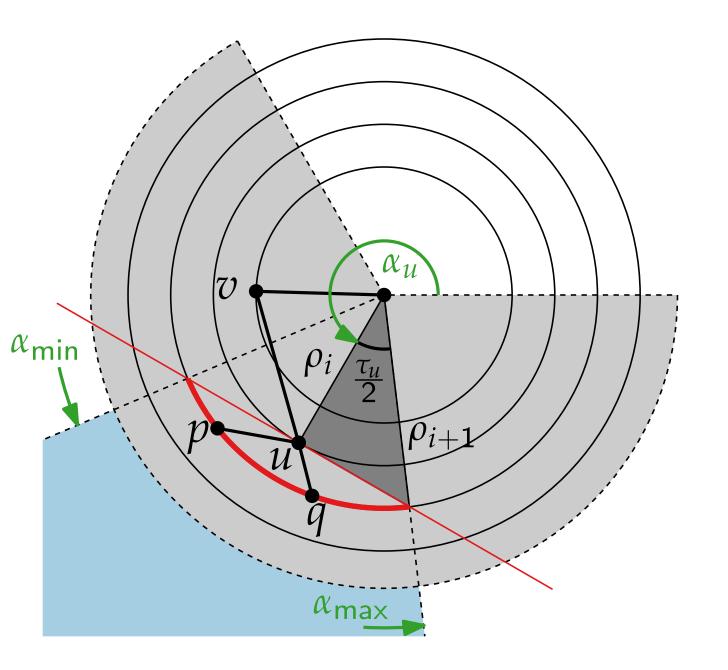


- τ_u angle of the wedge corresponding to vertex u
- $\ell(u)$ number of nodes in the subtree rooted at u
- ρ_i raduis of layer i

$$\cos \frac{\tau_u}{2} = \frac{\rho_i}{\rho_{i+1}}$$



- τ_u angle of the wedge corresponding to vertex u
- $\ell(u)$ number of nodes in the subtree rooted at u
- ρ_i raduis of layer i
- $au_u = \min\{\frac{\ell(u)}{\ell(v)-1}\tau_v, 2\arccos\frac{\rho_i}{\rho_{i+1}}\}$



- τ_u angle of the wedge corresponding to vertex u
- $\ell(u)$ number of nodes in the subtree rooted at u
- ρ_i raduis of layer i

Alternative:

$$\alpha_{\min} = \alpha_u - \frac{\tau_u}{2} \ge \alpha_u - \arccos \frac{\rho_i}{\rho_{i+1}}$$

$$\alpha_{\max} = \alpha_u + \frac{\tau_u}{2} \le \alpha_u + \arccos \frac{\rho_i}{\rho_{i+1}}$$

```
begin
   postorder(r)
   preorder(r, 0, 0, 2\pi)
   return (d_v, \alpha_v)_{v \in V(T)}
   // vertex pos./polar coord.
postorder(vertex v)
   calculate the size of the
   subtree recursively
```

```
begin
   postorder(r)
   preorder(r, 0, 0, 2\pi)
   return (d_v, \alpha_v)_{v \in V(T)}
   // vertex pos./polar coord.
postorder(vertex v)
   \ell(v) \leftarrow 1
   foreach child w of v do
     postorder(w)
      \ell(v) \leftarrow \ell(v) + \ell(w)
```

RadialTreeLayout(tree T, root $r \in T$, radii $\rho_1 < \cdots < \rho_k$)

Determine wedge for *u*

```
begin
   postorder(r)
   preorder(r, 0, 0, 2\pi)
   return (d_v, \alpha_v)_{v \in V(T)}
   // vertex pos./polar coord.
postorder(vertex v)
   \ell(v) \leftarrow 1
   foreach child w of v do
      postorder(w)
      \ell(v) \leftarrow \ell(v) + \ell(w)
```

RadialTreeLayout(tree T, root $r \in T$, radii $\rho_1 < \cdots < \rho_k$)

begin

postorder(r) $preorder(r, 0, 0, 2\pi)$ return $(d_v, \alpha_v)_{v \in V(T)}$ // vertex pos./polar coord.

postorder(vertex v)

$$\ell(v) \leftarrow 1$$
foreach child w of v **do**
 $| postorder(w) |$
 $\ell(v) \leftarrow \ell(v) + \ell(w)$

Determine wedge for *u* $lpha_{\mathsf{min}}$ α_{max}

RadialTreeLayout(tree T, root $r \in T$, radii $\rho_1 < \cdots < \rho_k$)

begin

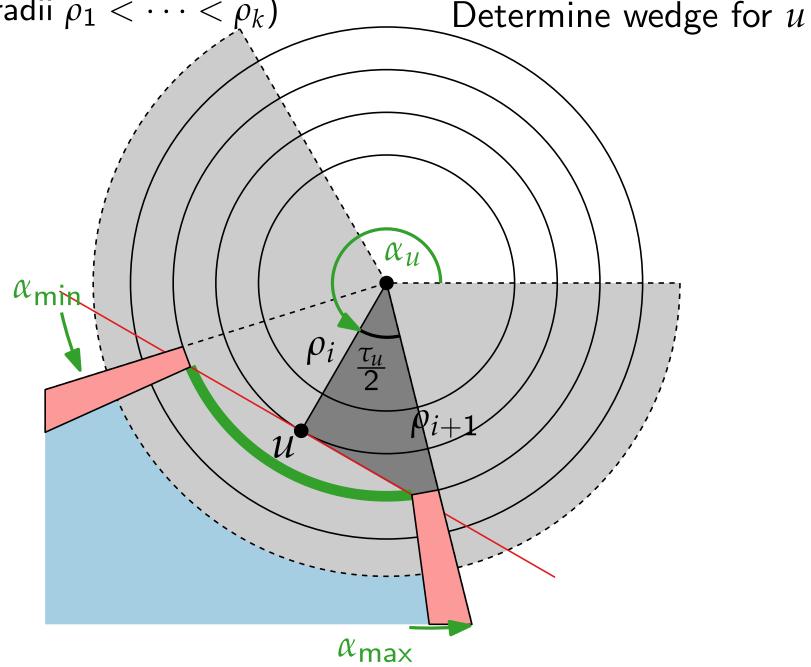
postorder(r)
preorder(r, 0, 0, 2 π)
return $(d_v, \alpha_v)_{v \in V(T)}$ // vertex pos./polar coord.

postorder(vertex v)

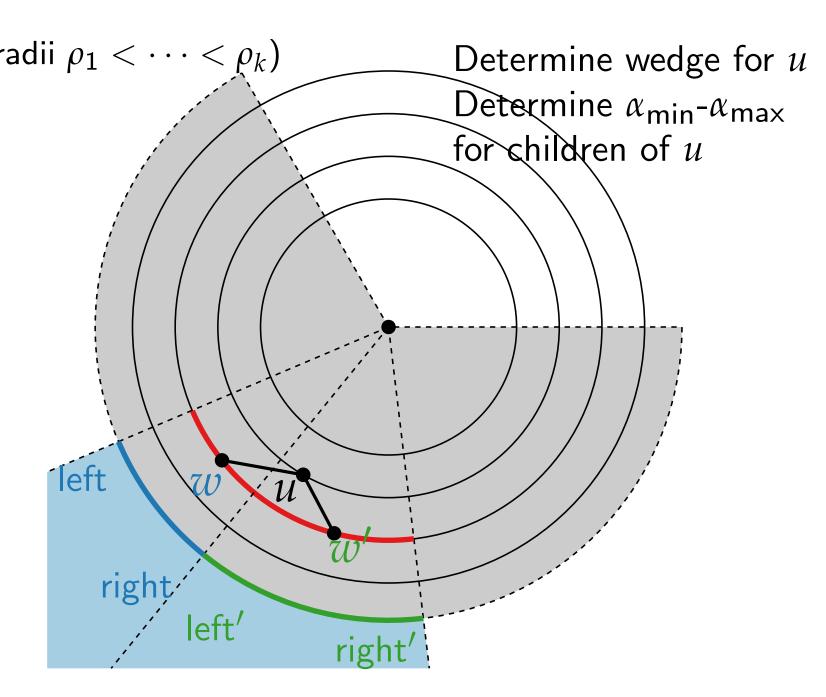
$$\ell(v) \leftarrow 1$$

foreach child w of v do

$$\ell(v) \leftarrow \ell(v) + \ell(w)$$



RadialTreeLayout(tree T, root $r \in T$, radii $\rho_1 < \cdots < \rho_k$) begin postorder(r) $preorder(r, 0, 0, 2\pi)$ return $(d_v, \alpha_v)_{v \in V(T)}$ // vertex pos./polar coord. postorder(vertex v) $\ell(v) \leftarrow 1$ foreach child w of v do postorder(w) $\ell(v) \leftarrow \ell(v) + \ell(w)$



```
begin
   postorder(r)
   preorder(r, 0, 0, 2\pi)
   return (d_v, \alpha_v)_{v \in V(T)}
   // vertex pos./polar coord.
postorder(vertex v)
   \ell(v) \leftarrow 1
   foreach child w of v do
     postorder(w)
    \ell(v) \leftarrow \ell(v) + \ell(w)
```

```
preorder(vertex v, t, \alpha_{\min}, \alpha_{\max})
      d_v \leftarrow \rho_t
     \alpha_v \leftarrow (\alpha_{\mathsf{min}} + \alpha_{\mathsf{max}})/2
      if t > 0 then
            \alpha_{\min} \leftarrow \max\{\alpha_{\min}, \alpha_{v} - \arccos\frac{\rho_{t}}{\rho_{t+1}}\}
           \alpha_{\max} \leftarrow \min\{\alpha_{\max}, \alpha_v + \arccos\frac{\rho_t}{\rho_{t+1}}\}
      left \leftarrow \alpha_{\min}
      foreach child w of v do
            right \leftarrow left + \frac{\ell(w)}{\ell(v)-1} \cdot (\alpha_{\mathsf{max}} - \alpha_{\mathsf{min}})
            preorder(w, t + 1, left, right)
          left \leftarrow right
```

```
begin
   postorder(r)
   preorder(r, 0, 0, 2\pi)
   return (d_v, \alpha_v)_{v \in V(T)}
   // vertex pos./polar coord.
postorder(vertex v)
   \ell(v) \leftarrow 1
   foreach child w of v do
     postorder(w)
    \ell(v) \leftarrow \ell(v) + \ell(w)
```

```
preorder(vertex v, t, \alpha_{\min}, \alpha_{\max})
     d_v \leftarrow \rho_t
     \alpha_v \leftarrow (\alpha_{\mathsf{min}} + \alpha_{\mathsf{max}})/2
      if t > 0 then
            \alpha_{\min} \leftarrow \max\{\alpha_{\min}, \alpha_{v} - \arccos\frac{\rho_{t}}{\rho_{t+1}}\}
           \alpha_{\max} \leftarrow \min\{\alpha_{\max}, \alpha_v + \arccos\frac{\rho_t}{\rho_{t+1}}\}
      left \leftarrow \alpha_{\min}
      foreach child w of v do
            right \leftarrow left + \frac{\ell(w)}{\ell(v)-1} \cdot (\alpha_{\mathsf{max}} - \alpha_{\mathsf{min}})
            preorder(w, t + 1, left, right)
          left \leftarrow right
```

```
begin
   postorder(r)
   preorder(r, 0, 0, 2\pi)
   return (d_v, \alpha_v)_{v \in V(T)}
   // vertex pos./polar coord.
postorder(vertex v)
   \ell(v) \leftarrow 1
   foreach child w of v do
     postorder(w)
    \ell(v) \leftarrow \ell(v) + \ell(w)
```

```
preorder(vertex v, t, \alpha_{\min}, \alpha_{\max})
     d_v \leftarrow \rho_t
    \alpha_v \leftarrow (\alpha_{\min} + \alpha_{\max})/2 //output
     if t > 0 then
           \alpha_{\min} \leftarrow \max\{\alpha_{\min}, \alpha_{v} - \arccos\frac{\rho_{t}}{\rho_{t+1}}\}
          \alpha_{\max} \leftarrow \min\{\alpha_{\max}, \alpha_v + \arccos \frac{\rho_t}{\rho_{t+1}}\}
     left \leftarrow \alpha_{\min}
      foreach child w of v do
           right \leftarrow left + \frac{\ell(w)}{\ell(v)-1} \cdot (\alpha_{\mathsf{max}} - \alpha_{\mathsf{min}})
           preorder(w, t + 1, left, right)
          left \leftarrow right
```

RadialTreeLayout(tree T, root $r \in T$, radii $\rho_1 < \cdots < \rho_k$)

```
begin
   postorder(r)
   preorder(r, 0, 0, 2\pi)
   return (d_v, \alpha_v)_{v \in V(T)}
   // vertex pos./polar coord.
postorder(vertex v)
   \ell(v) \leftarrow 1
   foreach child w of v do
     postorder(w)
    \ell(v) \leftarrow \ell(v) + \ell(w)
```

Runtime?

```
preorder(vertex v, t, \alpha_{\min}, \alpha_{\max})
      d_v \leftarrow \rho_t
    \alpha_v \leftarrow (\alpha_{\min} + \alpha_{\max})/2 //output
      if t > 0 then
            \alpha_{\min} \leftarrow \max\{\alpha_{\min}, \alpha_{v} - \arccos\frac{\rho_{t}}{\rho_{t+1}}\}
           \alpha_{\mathsf{max}} \leftarrow \mathsf{min}\{\alpha_{\mathsf{max}}, \alpha_v + \mathsf{arccos}\,\frac{\rho_t}{\rho_{t+1}}\}
      left \leftarrow \alpha_{\min}
      foreach child w of v do
            right \leftarrow left + \frac{\ell(w)}{\ell(v)-1} \cdot (\alpha_{\mathsf{max}} - \alpha_{\mathsf{min}})
            preorder(w, t + 1, left, right)
           left \leftarrow right
```

RadialTreeLayout(tree T, root $r \in T$, radii $\rho_1 < \cdots < \rho_k$)

```
begin
   postorder(r)
   preorder(r, 0, 0, 2\pi)
   return (d_v, \alpha_v)_{v \in V(T)}
   // vertex pos./polar coord.
postorder(vertex v)
   \ell(v) \leftarrow 1
   foreach child w of v do
     postorder(w)
    \ell(v) \leftarrow \ell(v) + \ell(w)
```

Runtime? O(n)

```
preorder(vertex v, t, \alpha_{\min}, \alpha_{\max})
      d_v \leftarrow \rho_t
    \alpha_v \leftarrow (\alpha_{\min} + \alpha_{\max})/2 //output
      if t > 0 then
            \alpha_{\min} \leftarrow \max\{\alpha_{\min}, \alpha_{v} - \arccos\frac{\rho_{t}}{\rho_{t+1}}\}
           \alpha_{\mathsf{max}} \leftarrow \mathsf{min}\{\alpha_{\mathsf{max}}, \alpha_v + \mathsf{arccos}\,\frac{\rho_t}{\rho_{t+1}}\}
      left \leftarrow \alpha_{\min}
      foreach child w of v do
            right \leftarrow left + \frac{\ell(w)}{\ell(v)-1} \cdot (\alpha_{\mathsf{max}} - \alpha_{\mathsf{min}})
            preorder(w, t + 1, left, right)
           left \leftarrow right
```

RadialTreeLayout(tree T, root $r \in T$, radii $\rho_1 < \cdots < \rho_k$)

```
begin
   postorder(r)
   preorder(r, 0, 0, 2\pi)
   return (d_v, \alpha_v)_{v \in V(T)}
  // vertex pos./polar coord.
postorder(vertex v)
   \ell(v) \leftarrow 1
   foreach child w of v do
     postorder(w)
    \ell(v) \leftarrow \ell(v) + \ell(w)
```

Runtime? O(n)Correctness?

```
preorder(vertex v, t, \alpha_{\min}, \alpha_{\max})
      d_v \leftarrow \rho_t
    \alpha_v \leftarrow (\alpha_{\min} + \alpha_{\max})/2 //output
      if t > 0 then
            \alpha_{\min} \leftarrow \max\{\alpha_{\min}, \alpha_{v} - \arccos\frac{\rho_{t}}{\rho_{t+1}}\}
           \alpha_{\mathsf{max}} \leftarrow \mathsf{min}\{\alpha_{\mathsf{max}}, \alpha_v + \mathsf{arccos}\,\frac{\rho_t}{\rho_{t+1}}\}
      left \leftarrow \alpha_{\min}
      foreach child w of v do
            right \leftarrow left + \frac{\ell(w)}{\ell(v)-1} \cdot (\alpha_{\mathsf{max}} - \alpha_{\mathsf{min}})
            preorder(w, t + 1, left, right)
           left \leftarrow right
```

```
begin
   postorder(r)
   preorder(r, 0, 0, 2\pi)
   return (d_v, \alpha_v)_{v \in V(T)}
  // vertex pos./polar coord.
postorder(vertex v)
   \ell(v) \leftarrow 1
   foreach child w of v do
     postorder(w)
    \ell(v) \leftarrow \ell(v) + \ell(w)
```

```
Runtime? \mathcal{O}(n)
Correctness? \checkmark
```

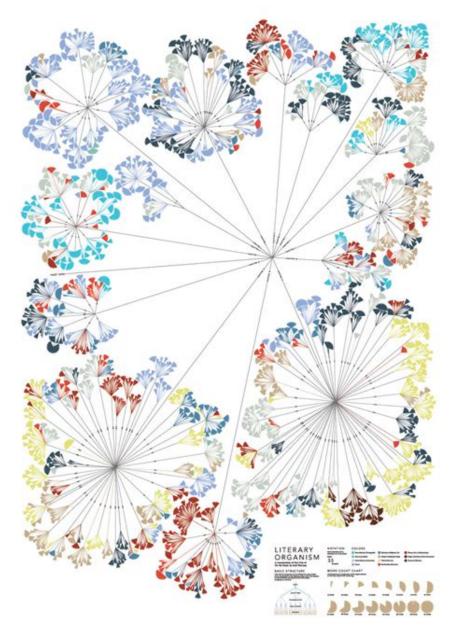
```
preorder(vertex v, t, \alpha_{\min}, \alpha_{\max})
     d_v \leftarrow \rho_t
    \alpha_v \leftarrow (\alpha_{\min} + \alpha_{\max})/2 //output
     if t > 0 then
           \alpha_{\min} \leftarrow \max\{\alpha_{\min}, \alpha_{v} - \arccos\frac{\rho_{t}}{\rho_{t+1}}\}
          \alpha_{\max} \leftarrow \min\{\alpha_{\max}, \alpha_v + \arccos \frac{\rho_t}{\rho_{t+1}}\}
     left \leftarrow \alpha_{\min}
      foreach child w of v do
           right \leftarrow left + \frac{\ell(w)}{\ell(v)-1} \cdot (\alpha_{\mathsf{max}} - \alpha_{\mathsf{min}})
           preorder(w, t + 1, left, right)
          left \leftarrow right
```

Radial layout – result

Theorem.

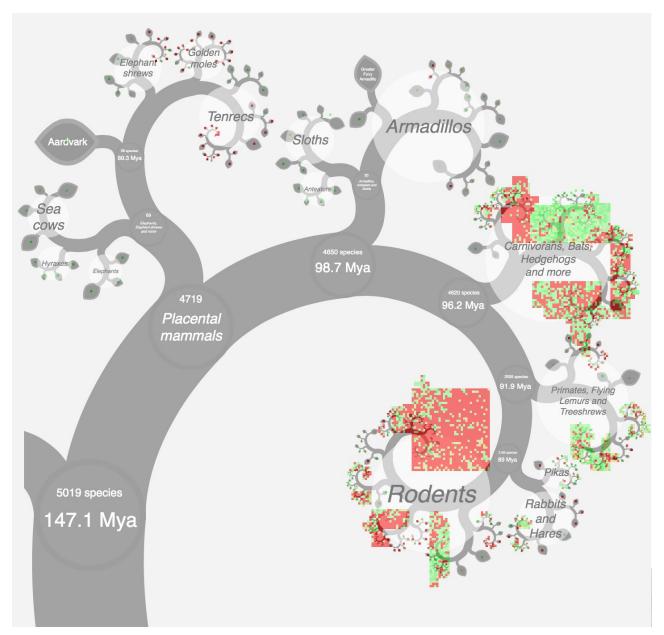
Let T be a tree with n vertices. The RadialTreeLayout algorithm constructs in O(n) time a drawing Γ of T s.t.:

- \blacksquare Γ is radial drawing
- Vertices lie on circle according to their depth
- Area quadratic in max degree times height of T (see book if interested)



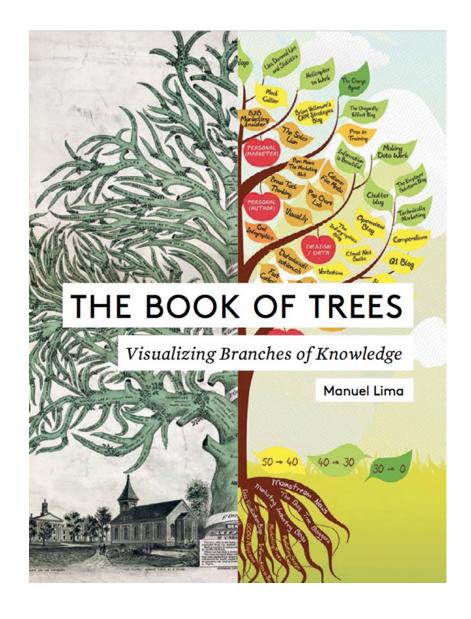
Writing Without Words:
The project explores methods
to visualises the differences in
writing styles of different
authors.

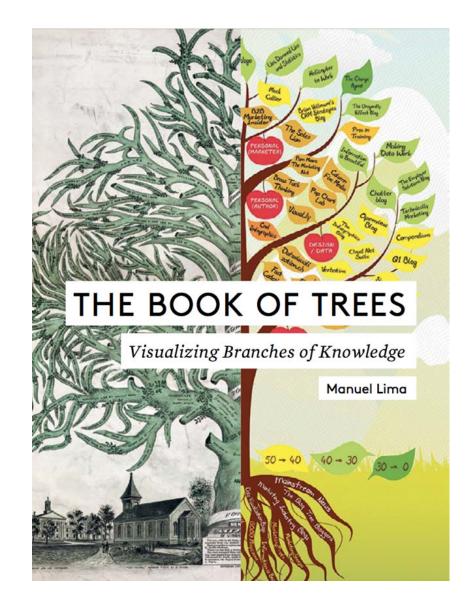
Similar to ballon layout

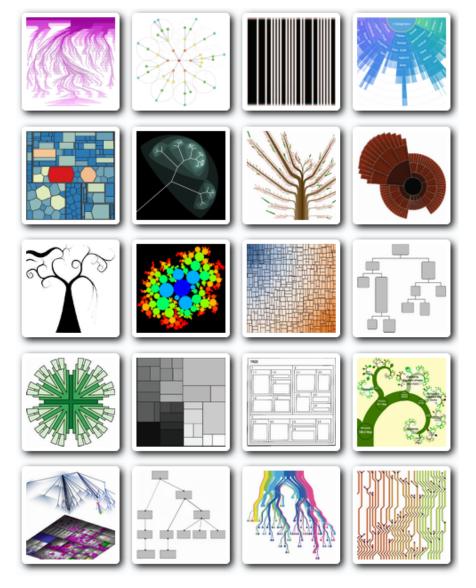


A phylogenetically organised display of data for all placental mammal species.

Fractal layout







treevis.net

Literature

- [GD Ch. 3.1] for divide and conquer methods for rooted trees
- [RT81] Reingold and Tilford, "Tidier Drawings of Trees" 1981 original paper for level-based layout algo
- [SR83] Reingold and Supowit, "The complexity of drawing trees nicely" 1983 NP-hardness proof for area minimisation & LP
- treevis.net compendium of drawing methods for trees
 (links on website)