Visualisation of graphs Drawing trees and series-parallel graphs
Divide and conquer methods

The original slides of this presentation were created by researchers at Karlsruhe Institute of Technology (KIT), TU Wien, U Wuerzburg, U Konstanz, ... The original presentation was modified/updated by A. Symvonis and C. Raftopoulou

■ Tree - connected graph without cycles ■ here: binary and rooted root

■ Tree - connected graph without cycles ■ here: binary and rooted root

■ Tree - connected graph without cycles ■ here: binary and rooted

■ Tree - connected graph without cycles ■ here: binary and rooted

Tree traversal

■ Depth-first search
■ Pre-order – first parent, then subtrees *v*

■ Tree - connected graph without cycles ■ here: binary and rooted

- - \blacksquare Pre-order first parent, then subtrees
	-

■ Tree - connected graph without cycles here: binary and rooted

- \blacksquare Pre-order first parent, then subtrees
- In-order left child, parent, right child
-

■ Tree - connected graph without cycles here: binary and rooted

- \blacksquare Pre-order first parent, then subtrees
- In-order left child, parent, right child
- Post-order first subtrees, then parent
- Breadth-first search
	-

■ Tree - connected graph without cycles here: binary and rooted

- \blacksquare Pre-order first parent, then subtrees
- In-order left child, parent, right child
- Post-order first subtrees, then parent
- Breadth-first search
	- Assignes vertices to levels corresponding to depth

Level-based layout – applications

Decision tree for outcome prediction after traumatic brain injury Source: Nature Reviews Neurology

Level-based layout – applications

Family tree of LOTR elves and half-elves

Level-based layout – drawing style

- What are properties of the layout?
- What are the drawing conventions?
- What are aesthetics to optimise?

Level-based layout $-$ drawing style

- What are properties of the layout?
- What are the drawing conventions?
-

- Vertices lie on layers and have integer coordinates
- Parent above children and "within their X-range" (typically, centered)
- Edges are straight-line segments
	- Isomorphic subtrees have identical drawings

Level-based layout $-$ drawing style

What are properties of the layout?

- What are the drawing conventions?
-

- Vertices lie on layers and have integer coordinates
- Parent above children and "within their X-range" (typically, centered)
- Edges are straight-line segments
- Isomorphic subtrees have identical drawings
- Drawing aesthetics ■ Area

Input: A binary tree *T* **Output:** A leveled drawing of T

Y-cooridinates: depth of vertices X-cooridinates: based on in-order tree traversal

Input: A binary tree *T* **Output:** A leveled drawing of T

Y-cooridinates: depth of vertices X-cooridinates: based on in-order tree traversal

Input: A binary tree *T* **Output:** A leveled drawing of T

Y-cooridinates: depth of vertices X-cooridinates: based on in-order tree traversal

Input: A binary tree *T* **Output:** A leveled drawing of T

Y-cooridinates: depth of vertices X-cooridinates: based on in-order tree traversal

Issues:

- Drawing is wider than needed
- Parents not in the center of span of 1999

1999

Input: A binary tree *T* **Output:** A leveled drawing of T

Input: A binary tree *T* **Output:** A leveled drawing of T

Base case: A single vertex \bullet T_1

Input: A binary tree *T* **Output:** A leveled drawing of T

Input: A binary tree *T* **Output:** A leveled drawing of T

Input: A binary tree *T* **Output:** A leveled drawing of T

Input: A binary tree *T* **Output:** A leveled drawing of T

Approach-1: Non-overlapping enclosing rectangles

*T*1 $T₂$ Approach-2: Overlapping enclosing rectangles Distance 1 or 2 (so that root is

placed on grid point)

■ In a bottom up manner (by a post-order traversal) we compute for each vertex the 5-tuple:

Width of enclosing rectangle

Distance to left boundary

Distance to right boundary

x-distance to left child

x-distance to right child

■ In a bottom up manner (by a post-order traversal) we compute for each vertex the 5-tuple:

Width of enclosing rectangle

Distance to left boundary

Distance to right boundary

x-distance to left child

x-distance to right child

 \blacksquare In a bottom up manner (by a post-order traversal) we compute for each vertex the 5-tuple:

Width of enclosing rectangle

Distance to left boundary

Distance to right boundary

x-distance to left child

x-distance to right child

■ For leaves: $(0, 0, 0, -, -)$

 \blacksquare In a bottom up manner (by a post-order traversal) we compute for each vertex the 5-tuple:

x-distance to left

Width of enclosing rectangle

Distance to left boundary

Distance to right boundary

Rule-1:

- Parent centered above children
- Parent at grid point

Horizontal distance: 1 or 2

In a bottom up manner (by a post-order traversal) we compute for each vertex the 5-tuple:

Width of enclosing

rectangle

Distance to left

boundary

boundary

x-distance to left child

Rule-1:

- Parent centered above children
- Parent at grid point

Horizontal distance: 1 or 2

In a bottom up manner (by a post-order traversal) we compute for each vertex the 5-tuple:

Width of enclosing

rectangle

Distance to left

boundary

boundary

x-distance to left

Rule-2:

child

Parent above and one unit to the left/right of single child

In a bottom up manner (by a post-order traversal) we compute for each vertex the 5-tuple:

rectangle

Distance to left

boundary

boundary

x-distance to left

child

Rule-2:

child

Parent above and one unit to the left/right of single child

In a bottom up manner (by a post-order traversal) we compute for each vertex the 5-tuple:

rectangle

Distance to left

boundary

Distance to right

boundary

x-distance to left

child

Rule-1:

child

- Parent centered above children
- Parent at grid point

Horizontal distance: 1 or 2

■ Computation of *x*-coordinates by pre-order traversal

■ Computation of *x*-coordinates by pre-order traversal

■ *y*-coordinate: the depth of each node
■ Computation of *x*-coordinates by pre-order traversal

■ Computation of *x*-coordinates by pre-order traversal

■ Computation of *x*-coordinates by pre-order traversal

■ Computation of *x*-coordinates by pre-order traversal

■ Computation of *x*-coordinates by pre-order traversal

Recall...

Approach-1: Non-overlapping enclosing rectangles

*T*1 *T*2 Approach-2: Overlapping enclosing rectangles Distance 1 or 2 (so that root is **Recall...**
 Approach-1: Non-overlapping enclosing rectangles

T₁

T₂

Distance 1 or 2 (so that root is

placed on grid point)

The left/right contour of leveled tree drawing

The left/right contour of leveled tree drawing

The left/right contour of leveled tree drawing

The left/right contour of leveled tree drawing

The left/right contour of leveled tree drawing

The left/right contour of leveled tree drawing

The left/right contour of leveled tree drawing

Computation of the left contour of a tree rooted at *u*, given

- –the left contours of its subtrees
- –the heights of its subtress

Computation of the left contour of a tree rooted at *u*, given –the left contours of its subtrees

–the heights of its subtress

Case-1: $h(T_u^L)$ h^{L}_{u}) = $h(T_u^R)$ *u*)

Computation of the left contour of a tree rooted at *u*, given –the left contours of its subtrees

–the heights of its subtress

 h^{L}_{u}) = $h(T_u^R)$ *u*)

Computation of the left contour of a tree rooted at *u*, given –the left contours of its subtrees –the heights of its subtress

 h^{L}_{u}) = $h(T_u^R)$ *u*

$$
)\qquad \textbf{Case-2: }h(T_u^L) < h(T_u^R)
$$

Computation of the left contour of a tree rooted at *u*, given –the left contours of its subtrees –the heights of its subtress

 h^{L}_{u}) = $h(T_u^R)$ *u*

$$
)\qquad \textbf{Case-2: }h(T_u^L) < h(T_u^R)
$$

Computation of the left contour of a tree rooted at *u*, given –the left contours of its subtrees –the heights of its subtress

 h^{L}_{u}) = $h(T_u^R)$ *u*

$$
)\qquad \textbf{Case-2: }h(T_u^L) < h(T_u^R)
$$

Computation of the left contour of a tree rooted at *u*, given –the left contours of its subtrees –the heights of its subtress

 h^{L}_{u}) = $h(T_u^R)$ *u*

$$
)\qquad \textbf{Case-2: }h(T_u^L) < h(T_u^R)
$$

[We traverse $T^L_{\mathcal{U}}$ T_u^L and T_u^R $\frac{dV}{dt}$ simultaneously in order to identify vertex \it{a} of $\rm{T}_{\rm{ {\cal U}}}^{\rm {R}}$ $\left[\begin{smallmatrix}I\ X\ \mathcal{U}\end{smallmatrix}\right]$

Computation of the left contour of a tree rooted at *u*, given –the left contours of its subtrees –the heights of its subtress

Computation of the left contour of a tree rooted at *u*, given –the left contours of its subtrees –the heights of its subtress

Total cost for computing the contours of a tree:

[We build each contour in a bottom-up fashion through a postorder traversal.]

Total cost for computing the contours of a tree:

[We build each contour in a bottom-up fashion through a postorder traversal.]

Total cost for computing the contours of a tree:

[We build each contour in a bottom-up fashion through a postorder traversal.]

Total cost for computing the contours of a tree:

Total cost for computing the contours of a tree:

Total cost for computing the contours of a tree:

Total cost for computing the contours of a tree:

Total cost for computing the contours of a tree:

Total cost for computing the contours of a tree:

Total cost for computing the contours of a tree:

Total cost for computing the contours of a tree:

Total cost for computing the contours of a tree:

Total cost for computing the contours of a tree:

Total cost for computing the contours of a tree:

Total cost for computing the contours of a tree:

Total cost for computing the contours of a tree:

Total cost for computing the contours of a tree:

$$
C(T) \leq \sum_{u \in V(T)} 1 + \min(h(T_u^L), h(T_u^R))
$$

Total cost for computing the contours of a tree:

[We build each contour in a bottom-up fashion through a postorder traversal.]

$$
C(T) \leq \sum_{u \in V(T)} 1 + \min(h(T_u^L), h(T_u^R))
$$

= $n + \sum_{u \in V(T)} \min(h(T_u^L), h(T_u^R))$
< $n + n$ (**Lemma 1**)
= $2n$

Thus, $C(T) \leq 2n$

Lemma 1: For each *n*-vertex binary tree it holds that:

$$
\sum_{u \in V(T)} \min(h(T_u^L), h(T_u^R)) < n
$$

Lemma 1: For each *n*-vertex binary tree it holds that:

$$
\sum_{u \in V(T)} \min(h(T_u^L), h(T_u^R)) < n
$$

- The height of each subtree is equal to the length of the left/right contour
- We connect each vertex from contour of the shorter subtree to the visible vertex on the contour of the opposite subtree.

Lemma 1: For each *n*-vertex binary tree it holds that:

$$
\sum_{u \in V(T)} \min(h(T_u^L), h(T_u^R)) < n
$$

- The height of each subtree is equal to the length of the left/right contour
- We connect each vertex from contour of the shorter subtree to the visible vertex on the contour of the opposite subtree.

Lemma 1: For each *n*-vertex binary tree it holds that:

$$
\sum_{u \in V(T)} \min(h(T_u^L), h(T_u^R)) < n
$$

- The height of each subtree is equal to the length of the left/right contour
- We connect each vertex from contour of the shorter subtree to the visible vertex on the contour of the opposite subtree.

Lemma 1: For each *n*-vertex binary tree it holds that:

$$
\sum_{u \in V(T)} \min(h(T_u^L), h(T_u^R)) < n
$$

- The height of each subtree is equal to the length of the left/right contour
- We connect each vertex from contour of the shorter subtree to the visible vertex on the contour of the opposite subtree.

Lemma 1: For each *n*-vertex binary tree it holds that:

$$
\sum_{u \in V(T)} \min(h(T_u^L), h(T_u^R)) < n
$$

- The height of each subtree is equal to the length of the left/right contour
- We connect each vertex from contour of the shorter subtree to the visible vertex on the contour of the opposite subtree.

Lemma 1: For each *n*-vertex binary tree it holds that:

$$
\sum_{u \in V(T)} \min(h(T_u^L), h(T_u^R)) < n
$$

- The height of each subtree is equal to the length of the left/right contour
- We connect each vertex from contour of the shorter subtree to the visible vertex on the contour of the opposite subtree.

Lemma 1: For each *n*-vertex binary tree it holds that:

$$
\sum_{u \in V(T)} \min(h(T_u^L), h(T_u^R)) < n
$$

- The height of each subtree is equal to the length of the left/right contour
- We connect each vertex from contour of the shorter subtree to the visible vertex on the contour of the opposite subtree.

Lemma 1: For each *n*-vertex binary tree it holds that:

$$
\sum_{u \in V(T)} \min(h(T_u^L), h(T_u^R)) < n
$$

- The height of each subtree is equal to the length of the left/right contour
- We connect each vertex from contour of the shorter subtree to the visible vertex on the contour of the opposite subtree.

Lemma 1: For each *n*-vertex binary tree it holds that:

$$
\sum_{u \in V(T)} \min(h(T_u^L), h(T_u^R)) < n
$$

- The height of each subtree is equal to the length of the left/right contour
- We connect each vertex from contour of the shorter subtree to the visible vertex on the contour of the opposite subtree.

Lemma 1: For each *n*-vertex binary tree it holds that:

$$
\sum_{u \in V(T)} \min(h(T_u^L), h(T_u^R)) < n
$$

- The height of each subtree is equal to the length of the left/right contour
- We connect each vertex from contour of the shorter subtree to the visible vertex on the contour of the opposite subtree.

Lemma 1: For each *n*-vertex binary tree it holds that:

$$
\sum_{u \in V(T)} \min(h(T_u^L), h(T_u^R)) < n
$$

- The height of each subtree is equal to the length of the left/right contour
- We connect each vertex from contour of the shorter subtree to the visible vertex on the contour of the opposite subtree.

Lemma 1: For each *n*-vertex binary tree it holds that:

$$
\sum_{u \in V(T)} \min(h(T_u^L), h(T_u^R)) < n
$$

- The height of each subtree is equal to the length of the left/right contour
- We connect each vertex from contour of the shorter subtree to the visible vertex on the contour of the opposite subtree.
- We can charge each connection to the vertex at its left endpoint
- Observe that we have at most one connection out of the right side of each vertex. Thus, at most *n* connections.

Theorem. (Reingold & Tilford '81)

Let *T* be a binary tree with *n* vertices. We can construct a drawing Γ of T in $\mathcal{O}(n)$ time, such that:

Theorem. (Reingold & Tilford '81)

Let *T* be a binary tree with *n* vertices. We can construct a drawing Γ of T in $\mathcal{O}(n)$ time, such that: \blacksquare \blacksquare is planar, straight-line and strictly downward ■ Γ is leveled: y-coordinate of vertex *v* is $-\text{depth}(v)$ ■ Vertical and horizontal distances are at least 1 Each vertex is centred wrt its children

Theorem. (Reingold & Tilford '81)

Let *T* be a binary tree with *n* vertices. We can construct a drawing Γ of T in $\mathcal{O}(n)$ time, such that: \blacksquare \blacksquare is planar, straight-line and strictly downward ■ Γ is leveled: y-coordinate of vertex *v* is $-\text{depth}(v)$ ■ Vertical and horizontal distances are at least 1 Each vertex is centred wrt its children **Area of Γ** is in $\mathcal{O}(n^2)$

Theorem. (Reingold & Tilford '81)

- Let *T* be a binary tree with *n* vertices. We can construct a drawing Γ of T in $\mathcal{O}(n)$ time, such that:
- \blacksquare \blacksquare is planar, straight-line and strictly downward
- Γ is leveled: y-coordinate of vertex *v* is $-\text{depth}(v)$
- Vertical and horizontal distances are at least 1
- Each vertex is centred wrt its children
- **Area of Γ** is in $\mathcal{O}(n^2)$
- Simply isomorphic subtrees have congruent drawings, up to translation
- Axially isomorphic trees have congruent drawings, up to translation and reflection around y-axis

Theorem. (Reingold & Tilford '81) Let *T* be a binary tree with *n* vertices. We can construct a drawing Γ of T in $\mathcal{O}(n)$ time, such that: \blacksquare \blacksquare is planar, straight-line and strictly downward ■ Γ is leveled: y-coordinate of vertex *v* is $-\text{depth}(v)$ ■ Vertical and horizontal distances are at least 1 Each vertex is centred wrt its children **Area of Γ** is in $\mathcal{O}(n^2)$ ■ Simply isomorphic subtrees have congruent drawings, up to translation ■ Axially isomorphic trees have congruent drawings, generalisable

construct a drawing Γ of T in $\mathcal{O}(n)$ time, such t
 Γ is planar, straight-line and strictly downwar
 Γ is leveled: y-coordinate of vertex v is $-\text{dep}$

Vertical and horizontal distances are

Level-based layout – area

- Presented algorithm tries to minimise width
- Does not always achieve that!

Level-based layout – area

Level-based layout – area

Level-based layout – area

Level-based layout – area

Level-based layout – area

Applications

- Cons cell diagram in LISP
- Cons(constructs) are memory objects which hold two values or pointers to values

Source: after gajon.org/trees-linked-lists-common-lisp/

Applications

- Cons cell diagram in LISP
- Cons(constructs) are memory objects which hold two values or pointers to values

Applications

- Cons cell diagram in LISP
- Cons(constructs) are memory objects which hold two values or pointers to values

Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

18 - 3

Drawing aesthetics

Applications

- Cons cell diagram in LISP
- Cons(constructs) are memory objects which hold two values or pointers to values

Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

■ Children are vertically and horizontally aligned with their parent

Drawing aesthetics

Applications

- Cons cell diagram in LISP
- Cons(constructs) are memory objects which hold two values or pointers to values

Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

- Children are vertically and horizontally aligned with their parent
- The bounding boxes of the subtrees of the children are disjoint

Drawing aesthetics

Applications

- Cons cell diagram in LISP
- Cons(constructs) are memory objects which hold two values or pointers to values

Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

- Children are vertically and horizontally aligned with their parent
- The bounding boxes of the subtrees of the children are disjoint

Drawing aesthetics

■ Height, width, area

hv-drawings – algorithm

Input: A binary tree *T* **Output:** A hv-drawing of T

Base case: \bullet

Divide: Recursively apply the algorithm to draw the left and right subtrees

Conquer:

hv-drawings – algorithm

Input: A binary tree *T* **Output:** A hv-drawing of T

Base case:

Divide: Recursively apply the algorithm to draw the left and right subtrees

- Always apply horizontal combination
- Place the larger subtree to the right
	- \blacksquare Size of subtree $:=$ number of vertices

- Always apply horizontal combination
- Place the larger subtree to the right
	- \blacksquare Size of subtree $:=$ number of vertices

- Always apply horizontal combination
- Place the larger subtree to the right
	- \blacksquare Size of subtree $:=$ number of vertices

- Always apply horizontal combination
- Place the larger subtree to the right
	- \blacksquare Size of subtree $:=$ number of vertices

- Always apply horizontal combination
- Place the larger subtree to the right
	- \blacksquare Size of subtree $:=$ number of vertices

- Always apply horizontal combination
- Place the larger subtree to the right
	- \blacksquare Size of subtree $:=$ number of vertices

- Always apply horizontal combination
- Place the larger subtree to the right
	- \blacksquare Size of subtree $:=$ number of vertices

- Always apply horizontal combination
- Place the larger subtree to the right
	- \blacksquare Size of subtree $:=$ number of vertices

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right
	- \blacksquare Size of subtree : $=$ number of vertices

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right
	- \blacksquare Size of subtree : $=$ number of vertices

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right
	- \blacksquare Size of subtree : $=$ number of vertices

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right
	- \blacksquare Size of subtree : $=$ number of vertices

Right-heavy approach

at least ·2

- Always apply horizontal combination
- Place the larger subtree to the right
	- \blacksquare Size of subtree : $=$ number of vertices

Right-heavy approach

at least ·2

- Always apply horizontal combination
- Place the larger subtree to the right
	- \blacksquare Size of subtree : $=$ number of vertices

Right-heavy approach

at least \cdot 2

- Always apply horizontal combination
- Place the larger subtree to the right
	- \blacksquare Size of subtree : $=$ number of vertices

Right-heavy approach

at least ·2

at least

- Always apply horizontal combination
- Place the larger subtree to the right
	- \blacksquare Size of subtree : $=$ number of vertices

Right-heavy approach

at least ·2

at least \cdot 2

- Always apply horizontal combination
- Place the larger subtree to the right
	- \blacksquare Size of subtree : $=$ number of vertices

Right-heavy approach

at least $\cdot 2$

at least ·2

at least \cdot 2

- Always apply horizontal combination
- Place the larger subtree to the right
	- \blacksquare Size of subtree : $=$ number of vertices

Right-heavy approach

at least $\cdot 2$

at least ·2

at least \cdot 2

- Always apply horizontal combination
- Place the larger subtree to the right
	- \blacksquare Size of subtree := number of vertices

Right-heavy approach

at least $\cdot 2$

at least ·2

at least \cdot 2

- Always apply horizontal combination
- Place the larger subtree to the right
	- \blacksquare Size of subtree := number of vertices

How to implement this in linear time?

■ At each node *u* we store the 5-tuple: *u* : (*xu*, *yu*, *Wu*, *Hu*,*s u*) where:

■ x ^{*u*}, *y*^{*u*} are the *x* and *y* coordinates of *u*

■ At each node *u* we store the 5-tuple: *u* : (*xu*, *yu*, *Wu*, *Hu*,*s u*) where:

■ x ^{*u*}, *y*^{*u*} are the *x* and *y* coordinates of *u*

At each node *u* we store the 5-tuple: *u* : (*xu*, *yu*, *Wu*, *Hu*,*s u*) where:

■ x ^{*u*}, *y*^{*u*} are the *x* and *y* coordinates of *u*

 W_u is the width of the layout of subtree T_u

 \blacksquare *H_u* is the height of the layout of subtree T_u

 \blacksquare s_u is the size of T_u

■ Compute in a bottom-up fashion (by a post-order traversal) s_u , W_u and H_u

■ Compute in a bottom-up fashion (by a post-order traversal) s_u , W_u and H_u

u : • $s_u = s_v + s_w + 1$
■ Compute in a bottom-up fashion (by a post-order traversal) s_u , W_u and H_u

 $s_u = s_v + s_w + 1$ if $(s_v < s_w)$ $H_u = \mathsf{max}(H_v+1,H_w)$ else $H_u = \mathsf{max}(H_w + \mathsf{1}, H_v)$ *u v w* $u \rightarrow v$ *w*

u :

■ Compute in a bottom-up fashion (by a post-order traversal) s_u , W_u and H_u

 $s_u = s_v + s_w + 1$ if $(s_v < s_w)$ $H_u = \mathsf{max}(H_v+1,H_w)$ else $H_u = \mathsf{max}(H_w + \mathsf{1}, H_v)$ *u v w* $u \rightarrow v$ *w*

 $W_u = W_v + W_w + 1$

u :

 \blacksquare Compute in a top-down fashion (by a pre-order traversal) x_u and y_u

 \blacksquare Compute in a top-down fashion (by a pre-order traversal) x_u and y_u

 $r:$ $\bullet x_r = 0, y_r$ $r(0, 0)$

 \blacksquare Compute in a top-down fashion (by a pre-order traversal) x_u and y_u

 $r:$ $\bullet x_r = 0, y_r = 0$ For subtree rooted at *v* and placed below *u*: $x_v = x_u$ $y_v = y_u - 1$ *u v w r*(0, 0) *u* : For subtree rooted at *w* and placed to the right of *u*: $x_w = x_u + W_v + \mathbf{1}$ $y_w = y_u$

 \blacksquare Compute in a top-down fashion (by a pre-order traversal) x_u and y_u

 $r:$ $\bullet x_r = 0, y_r = 0$ For subtree rooted at *v* and placed below *u*: $x_v = x_u$ $y_v = y_u - 1$ *u v w r*(0, 0) *u* : For subtree rooted at *w* and placed to the right of *u*: $x_w = x_u + W_v + \mathbf{1}$ $y_w = y_u$

Total time: *O*(*n*)

hv-drawing $-$ result (1)

Theorem.

```
Let T be a binary tree with n vertices. The
right-heavy algorithm constructs in O(n) time a
drawing Γ of T s.t.:
```
- \blacksquare \blacksquare is hv-drawing (planar, orthogonal)
- Width is at most $n-1$
- Height is at most log *n*
- Area is in $O(n \log n)$

hv-drawing – result (1)

Theorem.

```
Let T be a binary tree with n vertices. The
right-heavy algorithm constructs in O(n) time a
drawing Γ of T s.t.:
```
- Γ is hv-drawing (planar, orthogonal)
- Width is at most $n-1$
- Height is at most log *n*
- Area is in $O(n \log n)$
- Simply and axially isomorphic subtrees have congruent drawings up to translation

hv-drawing $-$ result (1)

Theorem.

Let *T* be a binary tree with *n* vertices. The right-heavy algorithm constructs in *O*(*n*) time a drawing Γ of *T* s.t.:

- \blacksquare \blacksquare is hv-drawing (planar, orthogonal)
- Width is at most *n* − 1
- Height is at most log *n*
- Area is in $O(n \log n)$
- Simply and axially isomorphic subtrees have congruent drawings up to translation

Bad aspect ratio Ω(*n*/ log *n*)

hv-drawing $-$ result (1)

Theorem.

```
Let T be a binary tree with n vertices. The
right-heavy algorithm constructs in O(n) time a
drawing Γ of T s.t.:
```
- Γ is hv-drawing (planar, orthogonal)
- Width is at most *n* − 1
- Height is at most log *n*
- Area is in $O(n \log n)$
- Simply and axially isomorphic subtrees have congruent drawings up to translation

General rooted tree

- Recursively compute layout for left and right subtrees
- Apply
	- horizontal combination if vertex is at odd depth
	- vertical combination if vertex is at even depth

- Recursively compute layout for left and right subtrees
- Apply
	- horizontal combination if vertex is at odd depth
	-

- Recursively compute layout for left and right subtrees
- Apply
	- horizontal combination if vertex is at odd depth
	-

Balanced approach

- Recursively compute layout for left and right subtrees Recursively compute layout for left and right subtrees
Apply
Depresenting to the property of the property of the properties of the p
- Apply
	- horizontal combination if vertex is at odd depth
	-

1

2

3

4

- Recursively compute layout for left and right subtrees
- Apply
	- horizontal combination if vertex is at odd depth
	-

- Recursively compute layout for left and right subtrees
- Apply
	- horizontal combination if vertex is at odd depth
	-

Balanced approach

- Recursively compute layout for left and right subtrees Recursively compute layout for left and right subtrees
Apply
Depresenting to the property of the property of the properties of the p
- Apply
	- horizontal combination if vertex is at odd depth
	-

1

2

3

4

- Recursively compute layout for left and right subtrees
- Apply
	- horizontal combination if vertex is at odd depth
	-

- Recursively compute layout for left and right subtrees
- Apply
	- horizontal combination if vertex is at odd depth
	-

- Recursively compute layout for left and right subtrees
- Apply
	- horizontal combination if vertex is at odd depth
	-

- Recursively compute layout for left and right subtrees
- Apply
	- horizontal combination if vertex is at odd depth
	-

Balanced approach

■ Recursively compute layout for left and right subtrees

■ Apply

■ horizontal combination if vertex is at odd depth

- Recursively compute layout for left and right subtrees
- Apply
	- horizontal combination if vertex is at odd depth
	-

Balanced approach

■ Recursively compute layout for left and right subtrees

■ Apply

- horizontal combination if vertex is at odd depth
-


```
Lemma. Let T be a binary tree. The drawing constructed
by balanced approach has
■ area O(n) and
■ constant aspect ratio
```
Lemma. Let *T* be a binary tree. The drawing constructed by balanced approach has ■ area $\mathcal{O}(n)$ and ■ constant aspect ratio

Base case: $h = 0$ \bullet $W_0 = 0, H_0 = 0$

```
Lemma. Let T be a binary tree. The drawing constructed
by balanced approach has
 ■ area \mathcal{O}(n) and
  constant aspect ratio
```

```
Base case: h = 0W_0 = 0, H_0 = 0
```
even height: $h = 2k$ *W^h* , *H^h*

```
Lemma. Let T be a binary tree. The drawing constructed
by balanced approach has
 ■ area \mathcal{O}(n) and
■ constant aspect ratio
```

```
Base case: h = 0W_0 = 0, H_0 = 0
```
even height: $h = 2k$ *W^h* , *H^h* \blacksquare compute W_{h+1} , H_{h+1}

```
Lemma. Let T be a binary tree. The drawing constructed
by balanced approach has
   area \mathcal{O}(n) and
  constant aspect ratio
```
Base case: $h = 0$ $W_0 = 0, H_0 = 0$

even height: $h = 2k$ *W^h* , *H^h* compute W_{h+1} , H_{h+1}

Lemma. Let *T* be a binary tree. The drawing constructed by balanced approach has area $\mathcal{O}(n)$ and constant aspect ratio

even height: $h = 2k$ *W^h* , *H^h* compute W_{h+1} , H_{h+1}

$$
W_{h+1} = 2W_h + 1
$$

$$
H_{h+1} = H_h + 1
$$

Base case: $h = 0$ $W_0 = 0, H_0 = 0$

Lemma. Let *T* be a binary tree. The drawing constructed by balanced approach has ■ area $O(n)$ and ■ constant aspect ratio

even height: $h = 2k$ *W^h* , *H^h*

$$
W_{h+2}=2W_h+2
$$

$$
H_{h+2}=2H_h+3
$$

Base case:
$$
h = 0
$$

 $W_0 = 0$, $H_0 = 0$

Lemma. Let *T* be a binary tree. The drawing constructed by balanced approach has

\n\n- area
$$
O(n)
$$
 and
\n- constant aspect ratio
\n- even height: $h = 2k$
\n- W_{h} , H_{h}
\n- $H_{h+2} = 2W_h + 2$
\n- W_h , H_h
\n- $H_{h+2} = 2H_h + 3$
\n
\n $W_h = 2(2^{h/2} - 1)$

\n $W_h = 2\sqrt{2}$

 $H_h = 3(2^{h/2}-1)$

Base case:
$$
h = 0
$$

 $W_0 = 0$, $H_0 = 0$

 \overline{n} − 2

 \overline{n} − 3

 \cdot $\sqrt{\ }$

 $H_h = 3$

26 - 10

Lemma. Let T be a binary tree. The drawing constructed by balanced approach has area $\mathcal{O}(n)$ and constant aspect ratio	Base case: $h = 0$ base case: $h = 0$ Base case: $h = 1$ We have $W_0 = 0$, $H_0 = 0$	
Even height: $h = 2k$ W_h , H_h	$W_{h+2} = 2W_h + 2$ $W_h = 2(2^{h/2} - 1)$	$W_h = 2\sqrt{n} - 2$ $W_h = 3(\sqrt{n} - 3)$
odd height: $h = 2k + 1$ W_h , H_h	$W_{h+2} = 2W_h + 3$ $W_h = 2\sqrt{2n} - 3$ W_h , H_h	
odd height: $h = 2k + 1$ W_h , H_h	$W_{h+2} = 2W_h + 3$ $W_h = 2\sqrt{2n} - 3$ $W_h = \frac{3}{2}\sqrt{2n} - 2$	

hv-drawing $-$ result (2)

Theorem. Let *T* be a binary tree with *n* vertices. The balanced algorithm constructs in *O*(*n*) time a drawing Γ of *T* s.t.: \blacksquare \blacksquare is hv-drawing (planar, orthogonal) ■ Width/Height is at most 2 ■ Area is in $\mathcal{O}(n)$
hv-drawing – result (2)

Theorem.

Let *T* be a binary tree with *n* vertices. The balanced algorithm constructs in *O*(*n*) time a drawing Γ of *T* s.t.:

- Γ is hv-drawing (planar, orthogonal)
- Width/Height is at most 2
- Area is in $\mathcal{O}(n)$
- Isomorphic subtrees have congruent drawings up to translation only if the roots are both on odd or both on even depth.

hv-drawing – result (2)

Theorem.

Let *T* be a binary tree with *n* vertices. The balanced algorithm constructs in *O*(*n*) time a drawing Γ of *T* s.t.:

- Γ is hv-drawing (planar, orthogonal)
- Width/Height is at most 2
- Area is in $\mathcal{O}(n)$
- Isomorphic subtrees have congruent drawings up to translation only if the roots are both on odd or both on even depth.

Optimal area?

- Not with divide & conquer approach, but
- can be computed with Dynamic Programming.

Algorithm Optimum hv-layout

Input: Vertex *v* Output: A list with all possible hv-layouts for *T^v*

If $h(T_v) == 0$. $-v$ is the only vertex in the tree return trivial single vertex hv-layout

else

- 1. Build lists L_1 and L_2 of all possible hv-layouts of $T_{\mathcal U}^L$ T_u^L and T_u^R $u^{'}$, resp.
- 2. Combine *L*¹ and *L*² (by applying all possible arrangements) to build list *L* of all possible hv-layouts for *T^v*
- 3. return *L*

Algorithm Optimum hv-layout

Input: Vertex *v* Output: A list with all possible hv-layouts for *T^v*

If $h(T_v) == 0$. $-v$ is the only vertex in the tree return trivial single vertex hv-layout

else

- 1. Build lists L_1 and L_2 of all possible hv-layouts of $T_{\mathcal U}^L$ T_u^L and T_u^R $u^{'}$, resp.
- 2. Combine *L*¹ and *L*² (by applying all possible arrangements) to build list *L* of all possible hv-layouts for *T^v*
- 3. return *L*

■ From the list at the root of the tree, select the optimum hv-layout. Optimum w.r.t.: area, perimeter, height, width, ...

Obervation 1: The number of possible hv-layouts is exponential

Obervation 1: The number of possible hy-layouts is exponential

Obervation 2: The number of possible enclosing rectangles is at most n^2 [*n* possible different heights and *n* possible different widths]

Obervation 1: The number of possible hy-layouts is exponential

Obervation 2: The number of possible enclosing rectangles is at most n^2 [*n* possible different heights and *n* possible different widths]

Obervation 3: We only need to keep the enclosing rectangles that are not fully covered by other enclosing rectangles. We refer to them as atoms.

Obervation 1: The number of possible hy-layouts is exponential

Obervation 2: The number of possible enclosing rectangles is at most n^2 [*n* possible different heights and *n* possible different widths]

Obervation 3: We only need to keep the enclosing rectangles that are not fully covered by other enclosing rectangles. We refer to them as atoms.

Lemma: For an *n*-vertex binary tree we have at most *n* − 1 atoms.

Obervation 1: The number of possible hy-layouts is exponential

Obervation 2: The number of possible enclosing rectangles is at most n^2 [*n* possible different heights and *n* possible different widths]

Obervation 3: We only need to keep the enclosing rectangles that are not fully covered by other enclosing rectangles. We refer to them as atoms.

Lemma: For an *n*-vertex binary tree we have at most *n* − 1 atoms.

Proof: Observe that:

- **Let each atom be of the form** $|w \times h|$.
- There is only one atom for each $w, 0 \leq w \leq n-1$.

Time Analysis:

- 1. Simple implementation:
	- **Combining the** n^2 rectangles in each of L_1 and L_2 to get a list of n^4 rectangles. \Rightarrow $O(n^4)$ time
	- Remove duplicate rectangles \Rightarrow $O(n^4)$ time
	- Repeat for each internal tree node \Rightarrow $O(n \cdot n^4) = O(n^5)$ total time

Time Analysis:

- 1. Simple implementation:
	- **Combining the** n^2 rectangles in each of L_1 and L_2 to get a list of n^4 rectangles. \Rightarrow $O(n^4)$ time
	- Remove duplicate rectangles \Rightarrow $O(n^4)$ time
	- Repeat for each internal tree node \Rightarrow $O(n \cdot n^4) = O(n^5)$ total time
- 2. Implementation based on "atom-only" lists [Observation-3]
	- Combine the *n* atoms in each of L_1 and L_2 and remove duplicates \Rightarrow $O(n^2)$ time ■ Repeat for each internal tree node \Rightarrow $O(n \cdot n^2) = O(n^3)$ total time

Time Analysis:

- 1. Simple implementation:
	- **Combining the** n^2 rectangles in each of L_1 and L_2 to get a list of n^4 rectangles. \Rightarrow $O(n^4)$ time
	- Remove duplicate rectangles \Rightarrow $O(n^4)$ time
	- Repeat for each internal tree node \Rightarrow $O(n \cdot n^4) = O(n^5)$ total time
- 2. Implementation based on "atom-only" lists [Observation-3]
	- Combine the *n* atoms in each of L_1 and L_2 and remove duplicates \Rightarrow $O(n^2)$ time ■ Repeat for each internal tree node \Rightarrow $O(n \cdot n^2) = O(n^3)$ total time

3. Fast "atom-based" implementation

- Combine the *n* atoms in each of L_1 and L_2 and remove duplicates by a "merge-like" operation \Rightarrow $O(n)$ time
- Repeat for each internal tree node \Rightarrow $O(n \cdot n) = O(n^2)$ total time

Time Analysis:

- 2. Implementation based on "atom-only" lists [Observation-3]
	- Combine the *n* atoms in each of L_1 and L_2 and remove duplicates \Rightarrow $O(n^2)$ time ■ Repeat for each internal tree node \Rightarrow $O(n \cdot n^2) = O(n^3)$ total time

Time Analysis:

2. Implementation based on "atom-only" lists [Observation-3]

■ Combine the *n* atoms in each of L_1 and L_2 and remove duplicates \Rightarrow $O(n^2)$ time ■ Repeat for each internal tree node \Rightarrow $O(n \cdot n^2) = O(n^3)$ total time

atoms: array of length *n* i atoms i = atom with length *i*

■ for each combination of L_1 and L_2 update array of atoms

Time Analysis:

2. Implementation based on "atom-only" lists [Observation-3]

■ Combine the *n* atoms in each of L_1 and L_2 and remove duplicates \Rightarrow $O(n^2)$ time ■ Repeat for each internal tree node \Rightarrow $O(n \cdot n^2) = O(n^3)$ total time

atoms: array of length *n* i atoms i = atom with length *i*

■ for each combination of L_1 and L_2 update array of atoms

Obervation: width is increasing $w_i < w_j$ height is decreasing $h_i > h_j$

Time Analysis:

- 3. Fast "atom-based" implementation
	- Combine the *n* atoms in each of L_1 and L_2 and remove duplicates by a "merge-like" operation \Rightarrow $O(n)$ time

Time Analysis:

- 3. Fast "atom-based" implementation
	- Combine the *n* atoms in each of L_1 and L_2 and remove duplicates by a "merge-like" operation \Rightarrow $O(n)$ time

Time Analysis:

- 3. Fast "atom-based" implementation
	- Combine the *n* atoms in each of L_1 and L_2 and remove duplicates by a "merge-like" operation \Rightarrow $O(n)$ time

■ Repeat for each internal tree node \Rightarrow $O(n \cdot n) = O(n^2)$ total time

$$
u_L = \begin{cases} \n u_R & \text{if } a_L: \{p_0, \ldots, p_k\}, \ p_i = (w_i, h_i) \\ \n u_R: \{q_0, \ldots, q_\ell\}, \ q_j = (w'_j, h'_j) \n \end{cases}
$$

j

combination $c(p_i, q_j)$: \blacksquare $W = w_i + w'_i$ *j* $+1$ \blacksquare $H = \mathsf{max}\{h_i + 1, h'_i\}$ }

Time Analysis:

- 3. Fast "atom-based" implementation
	- Combine the *n* atoms in each of L_1 and L_2 and remove duplicates by a "merge-like" $\text{operation} \Rightarrow O(n)$ time

$$
u_{L}
$$
\n
$$
u_{L}
$$
\n
$$
u_{L}
$$
\n
$$
u_{R}
$$

Time Analysis:

- 3. Fast "atom-based" implementation
	- Combine the *n* atoms in each of L_1 and L_2 and remove duplicates by a "merge-like" operation \Rightarrow $O(n)$ time

u_L	u_L	u_L
u_L	$\{p_0, \ldots, p_k\}, p_i = (w_i, h_i)$	
a_R : $\{q_0, \ldots, q_\ell\}, q_j = (w'_j, h'_j)$		
combination $c(p_i, q_j)$:	For fixed $p_i = (w_i, h_i)$	
$W = w_i + w'_j + 1$	W is increasing	
$H = \max\{h_i + 1, h'_j\}$	$H = \left\{\begin{array}{c} h'_j, f_1, h'_j > h_i + 1 \\ h'_i, \text{for } h'_j \leq h_i + 1 \end{array}\right\}$	

Time Analysis:

 u_L

- 3. Fast "atom-based" implementation
	- Combine the *n* atoms in each of L_1 and L_2 and remove duplicates by a "merge-like" operation \Rightarrow $O(n)$ time

■ Repeat for each internal tree node \Rightarrow $O(n \cdot n) = O(n^2)$ total time

$$
\begin{array}{c}\n u_{R} \\
 u_{R} \\
 u_{R} \\
 u_{R} \\
 u_{R} \\
 u_{R}\n \end{array}\n \quad\n \begin{array}{c}\n a_{L} \\
 \{p_{0}, \ldots, p_{k}\}, \ p_{i} = (w_{i}, h_{i}) \\
 a_{R} \\
 \{q_{0}, \ldots, q_{\ell}\}, \ q_{j} = (w'_{j}, h'_{j})\n \end{array}
$$

combination $c(p_i, q_j)$: \blacksquare $W = w_i + w'_i$ *j* $+1$ \blacksquare $H = \mathsf{max}\{h_i + 1, h'_i\}$ *j* }

For fixed $p_i = (w_i, h_i)$

- There exists smallest *j*(*i*) s.t. *h* ′ $f_{j(i)} \leq h_i + 1$
- atoms defined only for $j ≤ j(i)$

■ $j(i)$ is increasing

 \blacksquare $c(p_{i' > i}, q_j)$ enclosed by $c(p_i, q_j)$ for $j \leq j(i)$

Time Analysis:

- 3. Fast "atom-based" implementation
	- Combine the *n* atoms in each of L_1 and L_2 and remove duplicates by a "merge-like" operation \Rightarrow $O(n)$ time

Time Analysis:

- 3. Fast "atom-based" implementation
	- Combine the *n* atoms in each of L_1 and L_2 and remove duplicates by a "merge-like" operation \Rightarrow $O(n)$ time

Time Analysis:

- 3. Fast "atom-based" implementation
	- Combine the *n* atoms in each of L_1 and L_2 and remove duplicates by a "merge-like" $\text{operation} \Rightarrow O(n)$ time

Time Analysis:

- 3. Fast "atom-based" implementation
	- Combine the *n* atoms in each of L_1 and L_2 and remove duplicates by a "merge-like" $\text{operation} \Rightarrow O(n)$ time

Time Analysis:

- 3. Fast "atom-based" implementation
	- Combine the *n* atoms in each of L_1 and L_2 and remove duplicates by a "merge-like" operation \Rightarrow $O(n)$ time

Time Analysis:

- 3. Fast "atom-based" implementation
	- Combine the *n* atoms in each of L_1 and L_2 and remove duplicates by a "merge-like" operation \Rightarrow $O(n)$ time

Time Analysis:

- 3. Fast "atom-based" implementation
	- Combine the *n* atoms in each of L_1 and L_2 and remove duplicates by a "merge-like" $\text{operation} \Rightarrow O(n)$ time

Time Analysis:

- 3. Fast "atom-based" implementation
	- Combine the *n* atoms in each of L_1 and L_2 and remove duplicates by a "merge-like" operation \Rightarrow $O(n)$ time

```
combine1(atoms aL, atoms a
R)
```

```
i \leftarrow 0j \leftarrow 0while i \leq k and j \leq \ell do
     compute combination
     if h_i'\lambda'_j > h_i + 1 then
      j \leftarrow j + 1else
      i \leftarrow i + 1
```
Radial layout – applications

Radial layout – applications

Flare Visualization Toolkit code structure by Heer, Bostock and Ogievetsky, 2010

Greek Myth Family by Ribecca, 2011

Radial layout – drawing style

Drawing conventions

- Vertices lie on circular layers according to their depth
- Drawing is planar

Drawing aesthetics

■ Distribution of the vertices

Radial layout – drawing style

Drawing conventions

- Vertices lie on circular layers according to their depth
- Drawing is planar

Drawing aesthetics Distribution of the vertices

How may an algorithm optimise the distribution of the vertices?

Radial layout – algorithm attempt

Idea

• Angle corresponding to size $\ell(u)$ of $T(u)$:

$$
\tau_u = \frac{\ell(u)}{\ell(v)-1} \tau_v
$$

Radial layout – algorithm attempt

Idea

• Angle corresponding to size $\ell(u)$ of $T(u)$:

$$
\tau_u = \frac{\ell(u)}{\ell(v)-1} \tau_v
$$

Idea

• Angle corresponding to size $\ell(u)$ of $T(u)$:

$$
\tau_u = \frac{\ell(u)}{\ell(v)-1} \tau_v
$$

1

10

Idea

Angle corresponding to size $\ell(u)$ of $T(u)$:

$$
\tau_u = \frac{\ell(u)}{\ell(v)-1} \tau_v
$$

Idea

Angle corresponding to size $\ell(u)$ of $T(u)$:

v

Idea

Angle corresponding to size $\ell(u)$ of $T(u)$:

Idea

Angle corresponding to size $\ell(u)$ of $T(u)$:

v

 $\ell(u)$

Idea

Angle corresponding to size $\ell(u)$ of $T(u)$:

v

 $\ell(u)$

■ *τ^u* – angle of the wedge corresponding to vertex *u*

- *τ^u* angle of the wedge corresponding to vertex *u*
- \blacksquare $\ell(u)$ number of nodes in the subtree rooted at *u*
- *ρⁱ* raduis of layer *i*

$$
\blacksquare \; \cos \tfrac{\tau_u}{2} = \tfrac{\rho_i}{\rho_{i+1}}
$$

- *τ^u* angle of the wedge corresponding to vertex *u*
- \blacksquare $\ell(u)$ number of nodes in the subtree rooted at *u*
- *ρⁱ* raduis of layer *i*

$$
\cos \frac{\tau_u}{2} = \frac{\rho_i}{\rho_{i+1}}
$$

$$
\tau_u = \min \{ \frac{\ell(u)}{\ell(v) - 1} \tau_v, 2 \arccos \frac{\rho_i}{\rho_{i+1}} \}
$$

- *τ^u* angle of the wedge corresponding to vertex *u*
- \blacksquare $\ell(u)$ number of nodes in the subtree rooted at *u*
- *ρⁱ* raduis of layer *i*

$$
\cos \frac{\tau_u}{2} = \frac{\rho_i}{\rho_{i+1}}
$$
\n
$$
\tau_u = \min \{ \frac{\ell(u)}{\ell(v) - 1} \tau_v, 2 \arccos \frac{\rho_i}{\rho_{i+1}} \}
$$

 $\alpha_{\min} = \alpha_u - \frac{\tau_u}{2}$ $\frac{\sigma_u}{2} \geq \alpha_u$ — arccos $\frac{\rho_i}{\rho_{i+1}}$ ρ_{i+1} $\alpha_{\mathsf{max}} = \alpha_u + \frac{\tau_u}{2}$ $\frac{\sigma_u}{2} \leq \alpha_u + \arccos \frac{\rho_i}{\rho_{i+1}}$ ρ_{i+1}

 $\mathsf{RadialTreeLayout}(\mathsf{tree}\,\,T,\,\mathsf{root}\,\,r\in T,\,\mathsf{radii}\,\,\rho_{\mathbf{1}}<\cdots<\rho_k)$

begin

postorder(*r*) *preorder*(*r*, 0, 0, 2*π*) return $(d_v, \alpha_v)_{v \in V(T)}$ // vertex pos./polar coord.

postorder(vertex *v*)

calculate the size of the subtree recursively

 $\mathsf{RadialTreeLayout}(\mathsf{tree}\,\,T,\,\mathsf{root}\,\,r\in T,\,\mathsf{radii}\,\,\rho_{\mathbf{1}}<\cdots<\rho_k)$

begin

```
postorder(r)
preorder(r, 0, 0, 2π)
return (d_v, \alpha_v)_{v \in V(T)}// vertex pos./polar coord.
```
postorder(vertex *v*) $\ell(v) \leftarrow 1$ foreach child *w* of *v* do

postorder(*w*) $\ell(v) \leftarrow \ell(v) + \ell(w)$

 $\mathsf{RadialTreeLayout}(\mathsf{tree}\,\,T,\,\mathsf{root}\,\,r\in T,\,\mathsf{radii}\,\,\rho_{\mathbf{1}}<\cdots<\rho_k)$ begin *postorder*(*r*) *preorder*(*r*, 0, 0, 2*π*) return $(d_v, \alpha_v)_{v \in V(T)}$ // vertex pos./polar coord. postorder(vertex *v*) $\ell(v) \leftarrow 1$ foreach child *w* of *v* do *postorder*(*w*) $\ell(v) \leftarrow \ell(v) + \ell(w)$

Determine wedge for *u*

 $\mathsf{RadialTreeLayout}(\mathsf{tree}\,\,T,\,\mathsf{root}\,\,r\in T,\,\mathsf{radii}\,\,\rho_{\mathbf{1}}<\cdots<\rho_k)$

begin

```
postorder(r)
   preorder(r, 0, 0, 2π)
   return (d_v, \alpha_v)_{v \in V(T)}// vertex pos./polar coord.
postorder(vertex v)
   \ell(v) \leftarrow 1foreach child w of v do
     postorder(w)
    \ell(v) \leftarrow \ell(v) + \ell(w)
```

```
preorder(vertex v, t, α
min, αmax)
     d_v \leftarrow \rho_t\alpha_v \leftarrow (\alpha_{\mathsf{min}} + \alpha_{\mathsf{max}})/2if t > 0 then
              \alpha_{\mathsf{min}} \!\leftarrow\! \mathsf{max}\{\alpha_{\mathsf{min}}, \alpha_v \!-\! \mathsf{arccos}\, \frac{\rho_t}{\rho_{t+1}}\}\rho_{t+1}}
              \alpha_\mathsf{max}\!\leftarrow\!\mathsf{min}\{\alpha_\mathsf{max},\alpha_v\!+\!\mathsf{arccos}\,\frac{\rho_t}{\rho_{t+1}}\}\rho_{t+1}}
       left ← α
min
      foreach child w of v do
              right \leftarrow left + \frac{\ell(w)}{\ell(w)-1}\frac{\ell(w)}{\ell(v)-1} \cdot (\alpha_{\mathsf{max}} - \alpha_{\mathsf{min}})preorder(w, t + 1, left, right)left ← right
```
 $\mathsf{RadialTreeLayout}(\mathsf{tree}\,\,T,\,\mathsf{root}\,\,r\in T,\,\mathsf{radii}\,\,\rho_{\mathbf{1}}<\cdots<\rho_k)$ begin *postorder*(*r*) *preorder*(*r*, 0, 0, 2*π*) return $(d_v, \alpha_v)_{v \in V(T)}$ // vertex pos./polar coord. postorder(vertex *v*) $\ell(v) \leftarrow 1$ foreach child *w* of *v* do *postorder*(*w*) $\ell(v) \leftarrow \ell(v) + \ell(w)$ preorder(vertex *v*, *t*, *α* min, *α*max) $d_v \leftarrow \rho_t$ $\alpha_v \leftarrow (\alpha_{\mathsf{min}} + \alpha_{\mathsf{max}})/2$ if $t > 0$ then $\alpha_{\mathsf{min}} \!\leftarrow\! \mathsf{max}\{\alpha_{\mathsf{min}}, \alpha_v \!-\! \mathsf{arccos}\, \frac{\rho_t}{\rho_{t+1}}\}$ ρ_{t+1} $\alpha_\mathsf{max}\!\leftarrow\!\mathsf{min}\{\alpha_\mathsf{max},\alpha_v\!+\!\mathsf{arccos}\,\frac{\rho_t}{\rho_{t+1}}\}$ ρ_{t+1} *left* ← *α* min foreach child *w* of *v* do $right \leftarrow left + \frac{\ell(w)}{\ell(w)-1}$ $\frac{\ell(w)}{\ell(v)-1} \cdot (\alpha_{\mathsf{max}} - \alpha_{\mathsf{min}})$ $preorder(w, t + 1, left, right)$ *left* ← *right*

}

 $\mathsf{RadialTreeLayout}(\mathsf{tree}\,\,T,\,\mathsf{root}\,\,r\in T,\,\mathsf{radii}\,\,\rho_{\mathbf{1}}<\cdots<\rho_k)$ begin *postorder*(*r*) *preorder*(*r*, 0, 0, 2*π*) return $(d_v, \alpha_v)_{v \in V(T)}$ // vertex pos./polar coord. postorder(vertex *v*) $\ell(v) \leftarrow 1$ foreach child *w* of *v* do *postorder*(*w*) $\ell(v) \leftarrow \ell(v) + \ell(w)$ preorder(vertex *v*, *t*, *α* min, *α*max) $d_v \leftarrow \rho_t$ $\alpha_v \leftarrow (\alpha_{\mathsf{min}} + \alpha_{\mathsf{max}})/2$ if $t > 0$ then *left* ← *α* min foreach child *w* of *v* do $right \leftarrow left + \frac{\ell(w)}{\ell(w)-1}$ $preorder(w, t + 1, left, right)$

 $\alpha_{\mathsf{min}} \!\leftarrow\! \mathsf{max}\{\alpha_{\mathsf{min}}, \alpha_v \!-\! \mathsf{arccos}\, \frac{\rho_t}{\rho_{t+1}}\}$ ρ_{t+1} } $\alpha_\mathsf{max}\!\leftarrow\!\mathsf{min}\{\alpha_\mathsf{max},\alpha_v\!+\!\mathsf{arccos}\,\frac{\rho_t}{\rho_{t+1}}\}$ ρ_{t+1} } $\frac{\ell(w)}{\ell(v)-1} \cdot (\alpha_{\mathsf{max}} - \alpha_{\mathsf{min}})$ *left* ← *right* //*output*

Runtime?

 $\mathsf{RadialTreeLayout}(\mathsf{tree}\,\,T,\,\mathsf{root}\,\,r\in T,\,\mathsf{radii}\,\,\rho_{\mathbf{1}}<\cdots<\rho_k)$ begin *postorder*(*r*) *preorder*(*r*, 0, 0, 2*π*) return $(d_v, \alpha_v)_{v \in V(T)}$ // vertex pos./polar coord. postorder(vertex *v*) $\ell(v) \leftarrow 1$ foreach child *w* of *v* do *postorder*(*w*) $\ell(v) \leftarrow \ell(v) + \ell(w)$ preorder(vertex *v*, *t*, *α* min, *α*max) $d_v \leftarrow \rho_t$ $\alpha_v \leftarrow (\alpha_{\mathsf{min}} + \alpha_{\mathsf{max}})/2$ if $t > 0$ then $\alpha_{\mathsf{min}} \!\leftarrow\! \mathsf{max}\{\alpha_{\mathsf{min}}, \alpha_v \!-\! \mathsf{arccos}\, \frac{\rho_t}{\rho_{t+1}}\}$ $\alpha_\mathsf{max}\!\leftarrow\!\mathsf{min}\{\alpha_\mathsf{max},\alpha_v\!+\!\mathsf{arccos}\,\frac{\rho_t}{\rho_{t+1}}\}$ *left* ← *α* min foreach child *w* of *v* do $right \leftarrow left + \frac{\ell(w)}{\ell(w)-1}$ $\frac{\ell(w)}{\ell(v)-1} \cdot (\alpha_{\mathsf{max}} - \alpha_{\mathsf{min}})$ $preorder(w, t + 1, left, right)$ *left* ← *right* //*output*

 ρ_{t+1}

 ρ_{t+1}

}

 $\mathsf{RadialTreeLayout}(\mathsf{tree}\,\,T,\,\mathsf{root}\,\,r\in T,\,\mathsf{radii}\,\,\rho_{\mathbf{1}}<\cdots<\rho_k)$ begin *postorder*(*r*) *preorder*(*r*, 0, 0, 2*π*) return $(d_v, \alpha_v)_{v \in V(T)}$ // vertex pos./polar coord. postorder(vertex *v*) $\ell(v) \leftarrow 1$ foreach child *w* of *v* do *postorder*(*w*) $\ell(v) \leftarrow \ell(v) + \ell(w)$ preorder(vertex *v*, *t*, *α* min, *α*max) $d_v \leftarrow \rho_t$ $\alpha_v \leftarrow (\alpha_{\mathsf{min}} + \alpha_{\mathsf{max}})/2$ if $t > 0$ then $\alpha_{\mathsf{min}} \!\leftarrow\! \mathsf{max}\{\alpha_{\mathsf{min}}, \alpha_v \!-\! \mathsf{arccos}\, \frac{\rho_t}{\rho_{t+1}}\}$ $\alpha_\mathsf{max}\!\leftarrow\!\mathsf{min}\{\alpha_\mathsf{max},\alpha_v\!+\!\mathsf{arccos}\,\frac{\rho_t}{\rho_{t+1}}\}$ *left* ← *α* min foreach child *w* of *v* do $right \leftarrow left + \frac{\ell(w)}{\ell(w)-1}$ $\frac{\ell(w)}{\ell(v)-1} \cdot (\alpha_{\mathsf{max}} - \alpha_{\mathsf{min}})$ $preorder(w, t + 1, left, right)$ *left* ← *right* //*output* Runtime? O(*n*)

 ρ_{t+1}

 ρ_{t+1}

}

 $\mathsf{RadialTreeLayout}(\mathsf{tree}\,\,T,\,\mathsf{root}\,\,r\in T,\,\mathsf{radii}\,\,\rho_{\mathbf{1}}<\cdots<\rho_k)$ begin *postorder*(*r*) *preorder*(*r*, 0, 0, 2*π*) return $(d_v, \alpha_v)_{v \in V(T)}$ // vertex pos./polar coord. postorder(vertex *v*) $\ell(v) \leftarrow 1$ foreach child *w* of *v* do *postorder*(*w*) $\ell(v) \leftarrow \ell(v) + \ell(w)$ preorder(vertex *v*, *t*, *α* min, *α*max) $d_v \leftarrow \rho_t$ $\alpha_v \leftarrow (\alpha_{\mathsf{min}} + \alpha_{\mathsf{max}})/2$ if $t > 0$ then $\alpha_{\mathsf{min}} \!\leftarrow\! \mathsf{max}\{\alpha_{\mathsf{min}}, \alpha_v \!-\! \mathsf{arccos}\, \frac{\rho_t}{\rho_{t+1}}\}$ $\alpha_\mathsf{max}\!\leftarrow\!\mathsf{min}\{\alpha_\mathsf{max},\alpha_v\!+\!\mathsf{arccos}\,\frac{\rho_t}{\rho_{t+1}}\}$ *left* ← *α* min foreach child *w* of *v* do $right \leftarrow left + \frac{\ell(w)}{\ell(w)-1}$ $\frac{\ell(w)}{\ell(v)-1} \cdot (\alpha_{\mathsf{max}} - \alpha_{\mathsf{min}})$ $preorder(w, t + 1, left, right)$ *left* ← *right* //*output* Runtime? O(*n*)

Correctness?

 ρ_{t+1}

 ρ_{t+1}

}

Correctness? √

 $\mathsf{RadialTreeLayout}(\mathsf{tree}\,\,T,\,\mathsf{root}\,\,r\in T,\,\mathsf{radii}\,\,\rho_{\mathbf{1}}<\cdots<\rho_k)$ begin *postorder*(*r*) *preorder*(*r*, 0, 0, 2*π*) return $(d_v, \alpha_v)_{v \in V(T)}$ // vertex pos./polar coord. postorder(vertex *v*) $\ell(v) \leftarrow 1$ foreach child *w* of *v* do *postorder*(*w*) $\ell(v) \leftarrow \ell(v) + \ell(w)$ preorder(vertex *v*, *t*, *α* min, *α*max) $d_v \leftarrow \rho_t$ $\alpha_v \leftarrow (\alpha_{\mathsf{min}} + \alpha_{\mathsf{max}})/2$ if $t > 0$ then $\alpha_{\mathsf{min}} \!\leftarrow\! \mathsf{max}\{\alpha_{\mathsf{min}}, \alpha_v \!-\! \mathsf{arccos}\, \frac{\rho_t}{\rho_{t+1}}\}$ $\alpha_\mathsf{max}\!\leftarrow\!\mathsf{min}\{\alpha_\mathsf{max},\alpha_v\!+\!\mathsf{arccos}\,\frac{\rho_t}{\rho_{t+1}}\}$ *left* ← *α* min foreach child *w* of *v* do $right \leftarrow left + \frac{\ell(w)}{\ell(w)-1}$ $\frac{\ell(w)}{\ell(v)-1} \cdot (\alpha_{\mathsf{max}} - \alpha_{\mathsf{min}})$ $preorder(w, t + 1, left, right)$ *left* ← *right* //*output* Runtime? O(*n*)

 ρ_{t+1}

 ρ_{t+1}

}

Radial layout – result

Theorem.

Let *T* be a tree with *n* vertices. The RadialTreeLayout algorithm constructs in *O*(*n*) time a drawing Γ of *T* s.t.:

- \blacksquare Γ is radial drawing
- Vertices lie on circle according to their depth
- Area quadratic in max degree times height of T (see book if interested)

Writing Without Words: The project explores methods to visualises the differences in writing styles of different authors.

Similar to ballon layout

A phylogenetically organised display of data for all placental mammal species.

Fractal layout

treevis.net

Literature

- [GD Ch. 3.1] for divide and conquer methods for rooted trees
- [RT81] Reingold and Tilford, "Tidier Drawings of Trees" 1981 original paper for level-based layout algo
- [SR83] Reingold and Supowit, "The complexity of drawing trees nicely" $1983 -$ NP-hardness proof for area minimisation & LP
- t reevis.net compendium of drawing methods for trees (links on website)