Visualisation of graphs Drawing series-parallel graphs Divide and conquer methods

A graph G is **series-parallel**, if

A graph G is series-parallel, if it contains a single edge (s, t), or

A graph G is series-parallel, if

- it contains a single edge (s, t), or
- it consists of two series-parallel graphs G_1 , G_2 with sources s_1 , s_2 and sinks t_1 , t_2 that are combined using one of the following rules:

S

A graph G is series-parallel, if

- It contains a single edge (s, t), or
- it consists of two series-parallel graphs G_1 , G_2 with sources s_1 , s_2 and sinks t_1 , t_2 that are combined using one of the following rules:

A graph G is series-parallel, if

- it contains a single edge (s, t), or
- it consists of two series-parallel graphs G_1 , G_2 with sources s_1 , s_2 and sinks t_1 , t_2 that are combined using one of the following rules:

Observations: $S = |E| \le 2|V| - 3$ Series-parallel graphs

are planar

Parallel composition

Series composition

A decomposition tree of G is a binary tree T with nodes of three types: S, P and Q-type

A decomposition tree of G is a binary tree T with nodes of three types: S, P and Q-type

A Q-node represents a single edge

A decomposition tree of G is a binary tree T with nodes of three types: S, P and Q-type

- A Q-node represents a single edge
- An S-node represents a series composition; its children T_1 and T_2 represent G_1 and G_2

A decomposition tree of G is a binary tree T with nodes of three types: S, P and Q-type

- A Q-node represents a single edge
- An S-node represents a series composition; its children T_1 and T_2 represent G_1 and G_2
- A P-node represents a parallel composition; its children T_1 and T_2 represent G_1 and G_2

We further require:

if a node μ and its parent ν have the same type, then μ is the **right** child of ν .

We further require:

if a node μ and its parent ν have the same type, then μ is the **right** child of ν .

We further require:

if a node μ and its parent ν have the same type, then μ is the **right** child of ν .

We further require:

if a node μ and its parent ν have the same type, then μ is the **right** child of ν .

Unique decomposition tree

■ The order of the children (Q or S) define the graph embedding

Series-parallel graphs – applications

Flowcharts

PERT-Diagrams (Program Evaluation and Review Technique)

Series-parallel graphs – applications

Flowcharts

PERT-Diagrams (Program Evaluation and Review Technique)

Computational complexity: Linear time algorithms for \mathcal{NP} -hard problems (e.g. Maximum Matching, MIS, Hamiltonian Completion) Series-parallel graphs – drawing style

Drawing conventions

Drawing aesthetics

Series-parallel graphs – drawing style

Drawing conventions

- Planarity
- Straight-line edges
- Upward

Drawing aesthetics

Series-parallel graphs – drawing style

Drawing conventions

- Planarity
- Straight-line edges
- Upward

Drawing aesthetics

- Area
- Symmetry

A class of graphs that requires exponential area for its upward drawing

Theorem [Bertolazzi et al. 1994] Any upward drawing of the 2*n*-vertex embedded graph G_n that preserves the embedding requires area $\Omega(4^n)$, under any resolution rule.

Series-parallel graphs – fixed embedding
Proof:

Proof:

^{9 - 4}

 $\bullet t_0$

 $\bullet s_0$

 G_0

Series-parallel graphs – fixed embedding **Proof:** – above au t_{n+1} : – to the right of ρ ρ s_{n+1} : - below σ *t*_{*n*+1} tn τ t_{n+1} s_{n-1} Δ_n t_n $\bullet t_0$ G_n s_n ${\mathcal O}$ $\int S_{n+1}$ G_{n+1} $\bullet s_0$ sn G_0 s_{n+1}

Proof:

– above au

 t_{n+1} :

Series-parallel graphs – fixed embedding

Series-parallel graphs – fixed embedding

9 - 12

9 - 13

Proof:

– to the left of λ $2 \cdot Area(\Delta_n) < Area(\Pi)$ s_{n+1} : - below σ $[\overline{s_n, t_n}$ is the diagonal of Π] - to the left of λ Drawing Δ_{n+1} contains triangle T $2 \cdot Area(\Pi) \leq Area(\Delta_{n+1})$ (yellow) defined by ρ , σ and λ $Area(T) \leq Area(\Delta_{n+1})$ T is the union of Π and similar triangles T' and T'' $Area(T) \geq 2\dot{A}rea(\Pi)$ tn line parallel to λ through the yz: intersection y of τ and ρ s_{n-1} t_{n+1} yz partitions Π into: a triangle congruent to T'' and t_n a quadrilateral congruent to a portion of T' \mathbf{t}_0 G_n T'λ S_n ${\mathcal O}$ $\bigvee_{s_{n+1}} S_{n+1}$ •*s*₀ Sn s_{n+1} П: Parallelogram defined by τ , ρ , σ and G_0 line parallel to ρ through t_n

 t_{n+1} : – above τ

– to the right of ρ

Proof:

– to the left of λ $2 \cdot Area(\Delta_n) < Area(\Pi)$ s_{n+1} : - below σ $[\overline{s_n, t_n}$ is the diagonal of Π] - to the left of λ $2 \cdot Area(\Pi) \leq Area(\Delta_{n+1})$ Drawing Δ_{n+1} contains triangle T (yellow) defined by ρ , σ and λ $Area(T) \leq Area(\Delta_{n+1})$ T is the union of Π and similar triangles T' and T'' $Area(T) \geq 2\dot{A}rea(\Pi)$ tn line parallel to λ through the yz: 4 · Area $(\Delta_n) \leq Area(\Delta_{n+1})$ intersection y of τ and ρ s_{n-1} t_{n+1} yz partitions Π into: a triangle congruent to T'' and $\int t_n$ a quadrilateral congruent to a portion of T' \mathbf{t}_0 G_n T'λ S_n ${\mathcal O}$ •*s*₀ $\bullet s_{n+1}$ Sn s_{n+1} G_{n+1} П: Parallelogram defined by τ , ρ , σ and G_0 line parallel to ρ through t_n

 t_{n+1} : – above τ

– to the right of ρ

Divide & conquer algorithm using the decomposition tree

Draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with no vertex placed at its right corner

Divide & conquer algorithm using the decomposition tree

Draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with no vertex placed at its right corner

Base case: Q-nodes

Divide & conquer algorithm using the decomposition tree

Draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with no vertex placed at its right corner

Divide: Draw G_1 and G_2 first

Base case: Q-nodes

Divide & conquer algorithm using the decomposition tree

Draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with no vertex placed at its right corner

Base case: Q-nodes **Divide:** Draw G_1 and G_2 first **Conquer:**

S-nodes / series composition

Divide & conquer algorithm using the decomposition tree

Draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with no vertex placed at its right corner

- S-nodes / series composition
- P-nodes / parallel composition

Divide & conquer algorithm using the decomposition tree

Draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with no vertex placed at its right corner

- S-nodes / series composition
- P-nodes / parallel composition

Divide & conquer algorithm using the decomposition tree

Draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with no vertex placed at its right corner

- S-nodes / series composition
- P-nodes / parallel composition

Divide & conquer algorithm using the decomposition tree

Draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with no vertex placed at its right corner

- S-nodes / series composition
- P-nodes / parallel composition

Divide & conquer algorithm using the decomposition tree

Draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with no vertex placed at its right corner

- S-nodes / series composition
- P-nodes / parallel composition

Divide & conquer algorithm using the decomposition tree

Draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with no vertex placed at its right corner

Base case: Q-nodes **Divide:** Draw G_1 and G_2 first **Conquer:**

- S-nodes / series composition
- P-nodes / parallel composition

G

10 - 10

Divide & conquer algorithm using the decomposition tree

 $\Delta(G_2)$

 $\Delta(G_1)$

Draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with no vertex placed at its right corner

Base case: Q-nodes **Conquer:**

- S-nodes / series composition
- P-nodes / parallel composition

Divide: Draw G_1 and G_2 first $\Delta(G_1$

change embedding!

G

Divide & conquer algorithm using the decomposition tree

 $\Delta(G_2)$

 $\Delta(G_1)$

 $\Delta(G_1$

change embedding!

Draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with no vertex placed at its right corner

Base case: Q-nodes **Divide:** Draw G_1 and G_2 first **Conquer:**

- S-nodes / series composition
- P-nodes / parallel composition

G

10 - 12

Series-parallel graphs – straight-line drawings

11 - 8

Series-parallel graphs – straight-line drawings

This condition **is** preserved during the induction step.

Series-parallel graphs – straight-line drawings

This condition **is** preserved during the induction step.

emma. The drawing produced by the algorithm is planar.

Series-parallel graphs – result

Theorem.

Let G be a series-parallel graph. Then G (with **variable embedding**) admits a drawing Γ that is upward planar and a straight-line drawing with area in $\mathcal{O}(n^2)$

 $[m \times 2m, \text{ where } m \text{ is the number of edges of } G]$

Isomorphic components of G have congruent drawings up to translation.

 Γ can be computed in $\mathcal{O}(n)$ time.

Literature

- **GD** Ch. 3.2] for divide an conquer mehtods for series-parallel graphs.
- [BC+94] Bertolazzi, Cohen, Di Battista, Tamassia and Tollis, "How to draw a series-parallel digraph", Int. J. of Computational Geometry and Applications, Vol. 4, pp. 385-402, 1994.