Visualisation of graphs Drawing series-parallel graphs
Divide and conquer methods

A graph *G* is series-parallel, if

A graph *G* is series-parallel, if ■ it contains a single edge (s, t), or

A graph *G* is series-parallel, if

- it contains a single edge (s, t) , or
- it consists of two series-parallel graphs G_1 , G_2 with sources s_1 , s_2 and sinks t_1 , t_2 that are combined using one of the following rules:

A graph *G* is series-parallel, if

- it contains a single edge (s, t) , or
- it consists of two series-parallel graphs *G*₁, *G*₂ with sources s_1 , s_2 and sinks t_1 , t_2 that are combined using one of the following rules:

 $2 - 4$

A graph *G* is series-parallel, if

- it contains a single edge (s, t) , or
- \blacksquare it consists of two series-parallel graphs G_1 , G_2 with sources s_1 , s_2 and sinks t_1 , t_2 that are combined using one of the following rules: sinks t_1 , t_2 that are $\begin{array}{c|c} \bullet_S & |E| \leq 2|V| - s \ \hline \end{array}$
the following rules: **Series-parallel**
Series composition **Parallel composition**

t Observations: $\left| \cdot \right|_S$ \Box $|E| \leq 2|V| - 3$ Series-parallel graphs

are planar

A decomposition tree of *G* is a binary tree *T* with nodes of three types: S, P and Q-type

A decomposition tree of *G* is a binary tree *T* with nodes of three types: S, P and Q-type

■ A Q-node represents a single edge

A decomposition tree of *G* is a binary tree *T* with nodes of three types: S, P and Q-type

- A Q-node represents a single edge
- An S-node represents a series composition; its children T_1 and T_2 represent G_1 and G_2

A decomposition tree of *G* is a binary tree *T* with nodes of three types: S, P and Q-type

- A Q-node represents a single edge
- An S-node represents a series composition; its children T_1 and T_2 represent G_1 and G_2
- A P-node represents a parallel composition; its children T_1 and T_2 represent G_1 and G_2

We further require:

We further require:

We further require:

We further require:

Series-parallel graphs – applications

Flowcharts PERT-Diagrams (Program Evaluation and Review Technique)

Series-parallel graphs – applications

Flowcharts PERT-Diagrams (Program Evaluation and Review Technique)

Computational complexity: Linear time algorithms for \mathcal{NP} -hard problems (e.g. Maximum Matching, MIS, Hamiltonian Completion) Series-parallel graphs – drawing style

Drawing conventions

Drawing aesthetics

Series-parallel graphs – drawing style

Drawing conventions

- Planarity
- Straight-line edges
- Upward

Drawing aesthetics

Series-parallel graphs – drawing style

Drawing conventions

- Planarity
- Straight-line edges
- Upward

Drawing aesthetics

- Area
- Symmetry

Series-parallel graphs – An exponential area bound

■ A class of graphs that requires exponential area for its upward drawing

Series-parallel graphs - An exponential area bound

A class of graphs that requires exponential area for its upward drawing \mathbb{R}^n

Series-parallel graphs - An exponential area bound

A class of graphs that requires exponential area for its upward drawing $\mathcal{L}(\mathcal{A})$

Series-parallel graphs – An exponential area bound

■ A class of graphs that requires exponential area for its upward drawing

Series-parallel graphs – An exponential area bound

A class of graphs that requires exponential area for its upward drawing

Theorem [Bertolazzi et al. 1994] Any upward drawing of the 2*n*-vertex embedded graph *Gⁿ* that preserves the embedding requires area $\Omega(4^n)$, under any resolution rule.

Series-parallel graphs – fixed embedding
Proof:

Proof:

 $G₀$

 s_n

 $9 - 4$

 ρ

*G*0

s 0

t 0

Series-parallel graphs – fixed embedding *G*0 *s* 0 *t* 0 G_{n+1} G_n s_{n+1} *s n t n* t_{n+1} $n+1$ Δ_n *tn s n*−1 *t n*+1 Proof: *σ τ ρ t n*+1 : – above *τ* – to the right of *ρ s n*+1 : – below *σ* s_{n+1} *sn*

Proof:

: – above *τ*

Series-parallel graphs – fixed embedding

Series-parallel graphs – fixed embedding

9 - 14

Proof:

*G*0 *s* 0 *t* 0 G_{n+1} G_n s_{n+1} *s n t n* t_{n+1} $n+1$ *yz* partitions Π into: *tn s n*−1 *T* ′ *T* **1** $2 \cdot \text{Area}(\Delta_n) < \text{Area}(\Pi)$
 $\boxed{s_n, t_n}$ is the diagonal of Π 1
 2 $\cdot \text{Area}(\Pi) \leq \text{Area}(\Delta_{n+1})$
 2 $\cdot \text{Area}(\Pi) \leq \text{Area}(\Delta_{n+1})$
 $\begin{array}{ccc}\n\text{Drawing } \Delta_{n+1} & \text{contains triangle } T \\
\text{Using } \Delta_{n+1} & \text{contains triangle } T \\
\text{We allow defined by } \rho, \sigma \text{ and } \lambda\n\end{array}$ **a** 2 · $Area(\Pi) \leq Area(\Delta_{n+1})$ *σ τ ρ s n*+1 : – below *σ λ* $-$ to the left of λ – to the left of λ s_{n+1} *t n*+1 Drawing Δ_{n+1} contains triangle *T* (yellow) defined by *ρ*, *σ* and *λ* Π: Parallelogram defined by *τ*, *ρ*, *σ* and line parallel to *ρ* through *tn* \prod $\sqrt{g_n f_n}$ is the diagonal of Π T is the union of Π and similar triangles T' and T'' x y z *yz*: line parallel to *λ* through the intersection *y* of *τ* and *ρ* a triangle congruent to $T^{\prime\prime}$ and a quadrilateral congruent to a portion of *T* ′ $Area(T) \leq Area(\Delta_{n+1})$ $Area(T) \geq 2Area(\Pi)$ *sn*

t n+1 : – above *τ*

– to the right of *ρ*

Proof:

*G*0 *s* 0 *t* 0 *Gn*+1 G_n s_{n+1} *s n t n* t_{n+1} $n+1$ *yz* partitions Π into: *tn s n*−1 *T* ′ *T* **1** $2 \cdot \text{Area}(\Delta_n) < \text{Area}(\Pi)$
 $\boxed{s_n, t_n}$ is the diagonal of Π 1
 2 $\cdot \text{Area}(\Pi) \leq \text{Area}(\Delta_{n+1})$
 2 $\cdot \text{Area}(\Pi) \leq \text{Area}(\Delta_{n+1})$
 $\begin{array}{ccc}\n\text{Drawing } \Delta_{n+1} & \text{contains triangle } T \\
\text{Using } \Delta_{n+1} & \text{contains triangle } T \\
\text{We allow defined by } \rho, \sigma \text{ and } \lambda\n\end{array}$ **a** 2 · $Area(\Pi) \leq Area(\Delta_{n+1})$ ■ 4 · *Area*(∆*n*) ≤ *Area*(∆*n*+¹) *σ τ ρ s n*+1 : – below *σ λ* $-$ to the left of λ $-$ to the left of λ s_{n+1} *t n*+1 Drawing Δ_{n+1} contains triangle *T* (yellow) defined by *ρ*, *σ* and *λ* Π: Parallelogram defined by *τ*, *ρ*, *σ* and line parallel to *ρ* through *tn* \prod $\sqrt{g_n f_n}$ is the diagonal of Π T is the union of Π and similar triangles T' and T'' x y z *yz*: line parallel to *λ* through the intersection *y* of *τ* and *ρ* a triangle congruent to $T^{\prime\prime}$ and a quadrilateral congruent to a portion of *T* ′ $Area(T) \leq Area(\Delta_{n+1})$ $Area(T) \geq 2Area(\Pi)$ *sn*

t n+1 : – above *τ*

– to the right of *ρ*

Divide & conquer algorithm using the decomposition tree

■ Draw *G* inside a right-angled isosceles bounding triangle ∆(*G*) with no vertex placed at its right corner *^G*

Divide & conquer algorithm using the decomposition tree

■ Draw *G* inside a right-angled isosceles bounding triangle ∆(*G*) with no vertex placed at its right corner *^G*

Base case: Q-nodes

Divide & conquer algorithm using the decomposition tree

- Draw *G* inside a right-angled isosceles bounding triangle ∆(*G*) with no vertex placed at its right corner *^G*
- Base case: Q-nodes **Divide:** Draw G_1 and G_2 first

Divide & conquer algorithm using the decomposition tree

■ Draw *G* inside a right-angled isosceles bounding triangle ∆(*G*) with no vertex placed at its right corner *^G*

Base case: Q-nodes Conquer: **Divide:** Draw G_1 and G_2 first

■ S-nodes / series composition

Divide & conquer algorithm using the decomposition tree

■ Draw *G* inside a right-angled isosceles bounding triangle ∆(*G*) with no vertex placed at its right corner *^G*

- S-nodes / series composition
- P-nodes / parallel composition

Divide & conquer algorithm using the decomposition tree

■ Draw *G* inside a right-angled isosceles bounding triangle ∆(*G*) with no vertex placed at its right corner *^G*

- S-nodes / series composition
- P-nodes / parallel composition

Divide & conquer algorithm using the decomposition tree

■ Draw *G* inside a right-angled isosceles bounding triangle ∆(*G*) with no vertex placed at its right corner *^G*

- S-nodes / series composition
- P-nodes / parallel composition

Divide & conquer algorithm using the decomposition tree

■ Draw *G* inside a right-angled isosceles bounding triangle ∆(*G*) with no vertex placed at its right corner *^G*

- S-nodes / series composition
- P-nodes / parallel composition

Divide & conquer algorithm using the decomposition tree

■ Draw *G* inside a right-angled isosceles bounding triangle ∆(*G*) with no vertex placed at its right corner *^G*

- S-nodes / series composition
- P-nodes / parallel composition

Divide & conquer algorithm using the decomposition tree

■ Draw *G* inside a right-angled isosceles bounding triangle ∆(*G*) with no vertex placed at its right corner *^G*

Base case: Q-nodes Conquer: **Divide:** Draw G_1 and G_2 first

- S-nodes / series composition
- P-nodes / parallel composition

10 - 10

Divide & conquer algorithm using the decomposition tree

t

■ Draw *G* inside a right-angled isosceles bounding triangle ∆(*G*) with no vertex placed at its right corner *^G*

Base case: Q-nodes Conquer: **Divide:** Draw G_1 and G_2 first

■ S-nodes / series composition

s

t

■ P-nodes / parallel composition

Divide & conquer algorithm using the decomposition tree

■ Draw *G* inside a right-angled isosceles bounding triangle ∆(*G*) with no vertex placed at its right corner *^G*

- S-nodes / series composition
- P-nodes / parallel composition

Series-parallel graphs – straight-line drawings

Series-parallel graphs – straight-line drawings

Series-parallel graphs – straight-line drawings

Series-parallel graphs – result

Theorem.

Let *G* be a series-parallel graph. Then *G* (with variable embedding) admits a drawing Γ that

- is upward planar and
- a straight-line drawing
- with area in $\mathcal{O}(n^2)$

 $[m \times 2m]$, where *m* is the number of edges of G

Isomorphic components of G have congruent drawings up to translation.

Γ can be computed in $O(n)$ time.

Literature

- [GD Ch. 3.2] for divide an conquer mehtods for series-parallel graphs.
- \Box [BC+94] Bertolazzi, Cohen, Di Battista, Tamassia and Tollis, "How to draw a series-parallel digraph", Int. J. of Computational Geometry and Applications, Vol. 4, pp. 385-402, 1994.