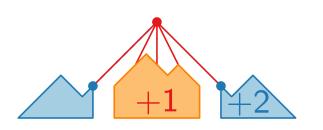
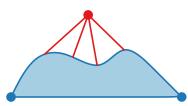
Visualisation of graphs

Planar straight-line drawings

Canonical order

Antonios Symvonis · Chrysanthi Raftopoulou Fall semester 2022





The original slides of this presentation were created by researchers at Karlsruhe Institute of Technology (KIT), TU Wien, U Wuerzburg, U Konstanz, ... The original presentation was modified/updated by A. Symvonis and C. Raftopoulou

So far we looked at planar and straight-line drawings of trees and series-parallel graphs.

- So far we looked at planar and straight-line drawings of trees and series-parallel graphs.
- Why straight-line? Why planar?

- So far we looked at planar and straight-line drawings of trees and series-parallel graphs.
- Why straight-line? Why planar?
- Bennett, Ryall, Spaltzeholz and Gooch, 2007 "The Aesthetics of Graph Visualization"

3.2. Edge Placement Heuristics

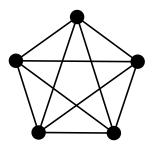
By far the most agreed-upon edge placement heuristic is to *minimize the number of edge crossings* in a graph [BMRW98, Har98, DH96, Pur02, TR05, TBB88]. The importance of avoiding edge crossings has also been extensively validated in terms of user preference and performance (see Section 4). Similarly, based on perceptual principles, it is beneficial to *minimize the number of edge bends* within a graph [Pur02, TR05, TBB88]. Edge bends make edges more difficult to follow because an edge with a sharp bend is more likely to be perceived as two separate objects. This leads to the heuristic of *keeping edge bends uniform* with respect to the bend's position on the edge and its angle [TR05]. If an edge must be bent to satisfy other aesthetic criteria, the angle of the bend should be as little as possible, and the bend placement should evenly divide the edge.

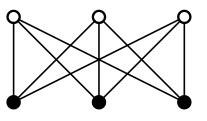
- So far we looked at planar and straight-line drawings of trees and series-parallel graphs.
- Why straight-line? Why planar?
- Bennett, Ryall, Spaltzeholz and Gooch, 2007 "The Aesthetics of Graph Visualization"

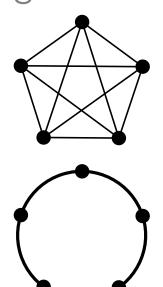
3.2. Edge Placement Heuristics

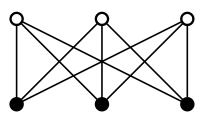
By far the most agreed-upon edge placement heuristic is to minimize the number of edge crossings in a graph [BMRW98, Har98, DH96, Pur02, TR05, TBB88]. The importance of avoiding edge crossings has also been extensively validated in terms of user preference and performance (see Section 4). Similarly, based on perceptual principles, it is beneficial to minimize the number of edge bends within a graph [Pur02, TR05, TBB88]. Edge bends make edges more difficult to follow because an edge with a sharp bend is more likely to be perceived as two separate objects. This leads to the heuristic of keeping edge bends uniform with respect to the bend's position on the edge and its angle [TR05]. If an edge must be bent to satisfy other aesthetic criteria, the angle of the bend should be as little as possible, and the bend placement should evenly divide the edge.

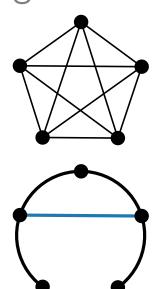
- crossings reduce readability
- bends reduce readability

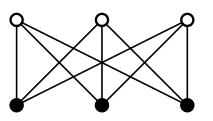


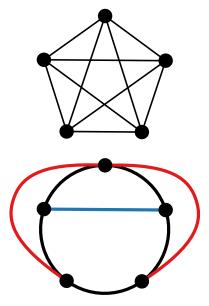


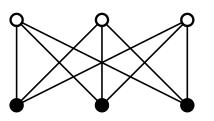


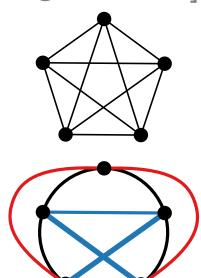


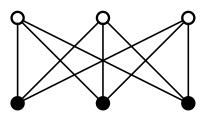


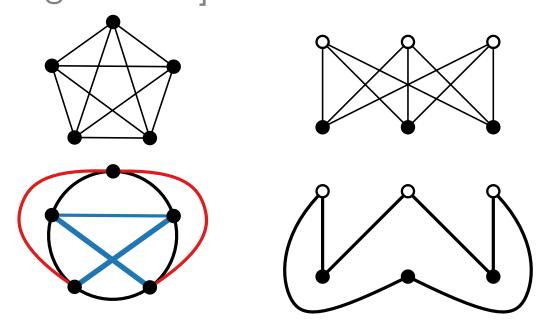


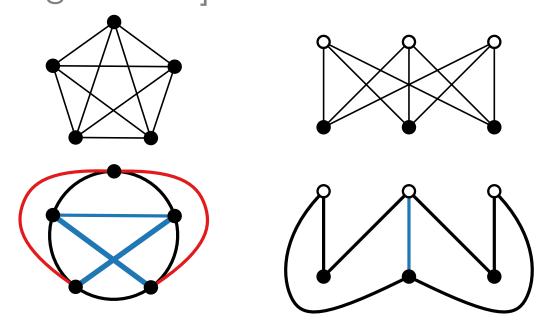


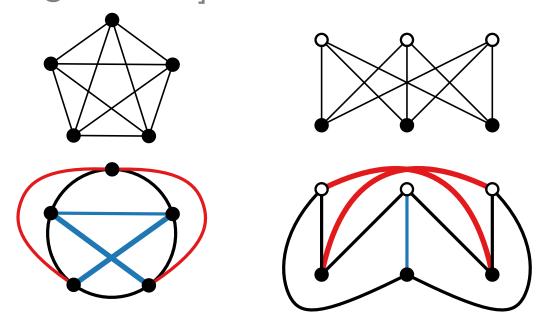


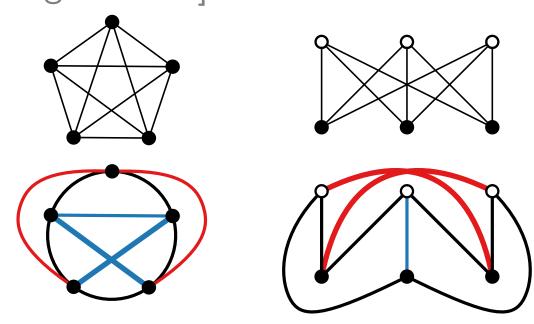








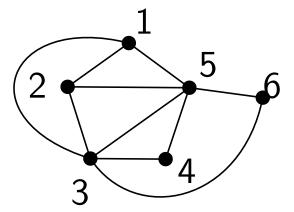




- **Recognition:** For a graph G with n vertices, there is an $\mathcal{O}(n)$ time algorithm to test if G is planar. [Hopcroft & Tarjan 1974]
 - Also computes an *embedding* in O(n).

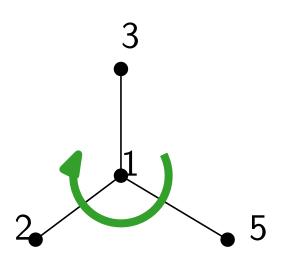
- **■** Embedding of planar graph:
 - clockwise circular order of the edges incident to each vertex
 - outerface (clockwise order of edges)

- **■** Embedding of planar graph:
 - clockwise circular order of the edges incident to each vertex
 - outerface (clockwise order of edges)



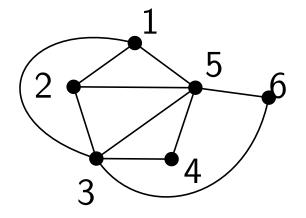
■ Embedding of planar graph:

- clockwise circular order of the edges incident to each vertex
- outerface (clockwise order of edges)



■ Embedding of planar graph:

- clockwise circular order of the edges incident to each vertex
- outerface (clockwise order of edges)



Edges:

```
1: {(1,5), (1,2), (1,3)}

2: {(2,1), (2,5), (2,3)}

3: {(3,1), (3,2), (3,5), (3,4), (3,6)}

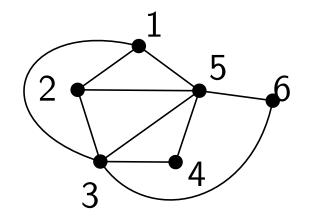
4: {(4,3), (4,5)}

5: {(5,6), (5,4), (5,3), (5,2), (5,1)}

6: {(6,3), (6,5)}
```

■ Embedding of planar graph:

- clockwise circular order of the edges incident to each vertex
- outerface (clockwise order of edges)



Edges:

```
1: {(1,5), (1,2), (1,3)}

2: {(2,1), (2,5), (2,3)}

3: {(3,1), (3,2), (3,5), (3,4), (3,6)}

4: {(4,3), (4,5)}

5: {(5,6), (5,4), (5,3), (5,2), (5,1)}

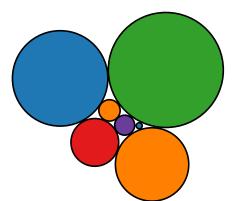
6: {(6,3), (6,5)}
```

Outerface:

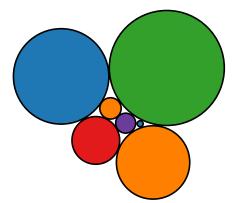
 $1:\{(1,3),(3,6),(6,5),(5,1)\}$

- Straight-line drawing: Every planar graph has an embedding where the edges are straight-line segments. [Wagner 1936, Fáry 1948, Stein 1951]
 - The algorithms implied by this theory produce drawings with area *not bounded* by any polynomial on n.

- Straight-line drawing: Every planar graph has an embedding where the edges are straight-line segments. [Wagner 1936, Fáry 1948, Stein 1951]
 - The algorithms implied by this theory produce drawings with area *not bounded* by any polynomial on n.
- Coin graph: Every planar graph is a circle contact graph (implies straight-line drawing). [Koebe 1936]



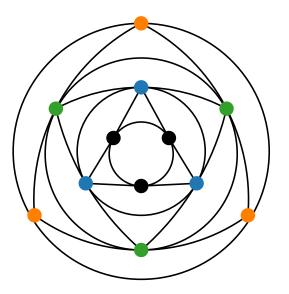
- Straight-line drawing: Every planar graph has an embedding where the edges are straight-line segments. [Wagner 1936, Fáry 1948, Stein 1951]
 - The algorithms implied by this theory produce drawings with area *not bounded* by any polynomial on n.
- Coin graph: Every planar graph is a circle contact graph (implies straight-line drawing). [Koebe 1936]

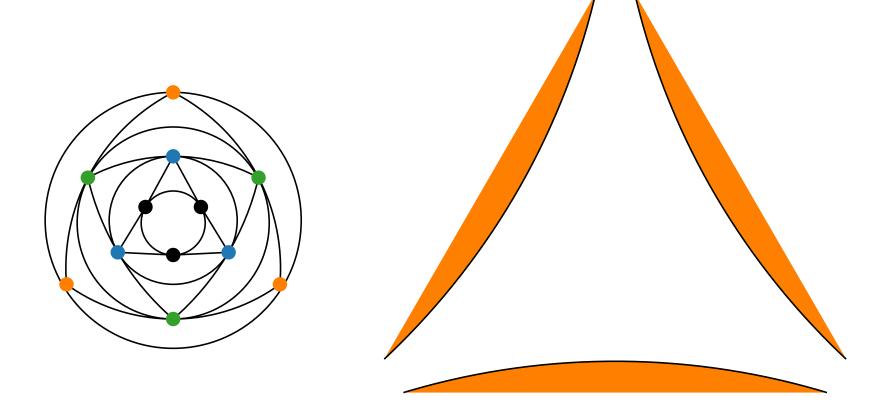


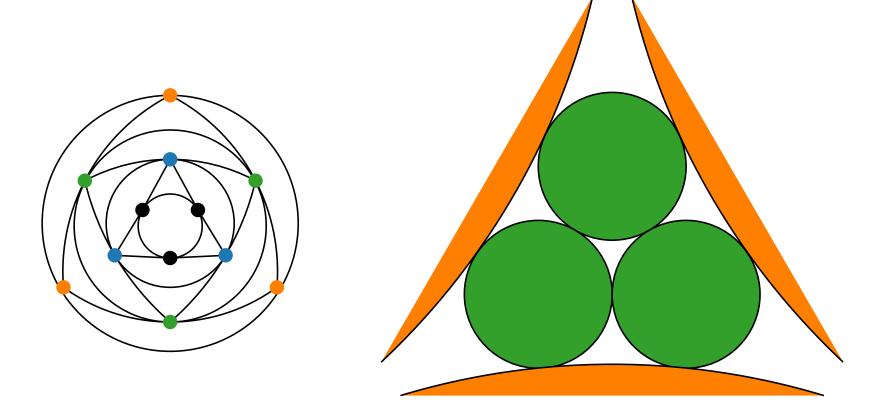
- Every 3-connected planar graph has an embedding with convex polygons as its faces (i.e., implies straight lines). [Tutte 1963: How to draw a graph]
 - Idea: Place vertices in the barycentre of neighbours.
 - Drawback: Requires large grids.

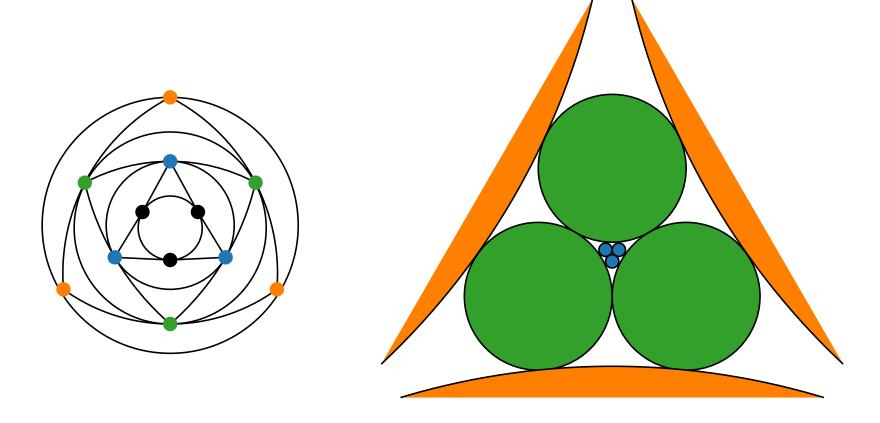
■ Coin graph:

Exponential area

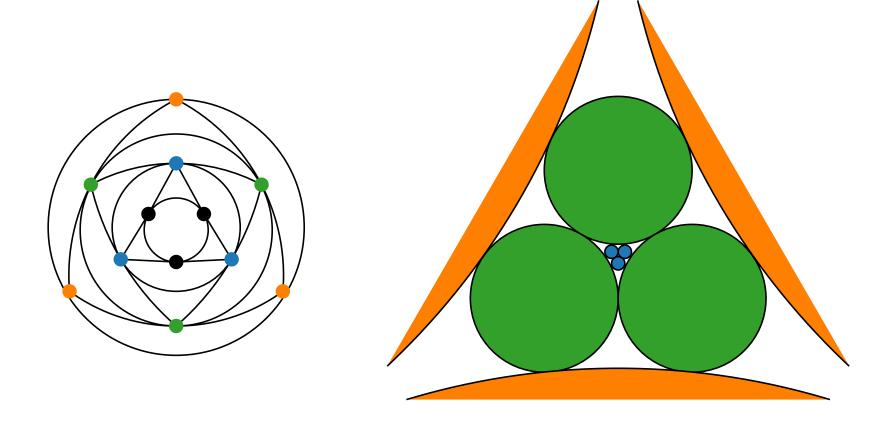




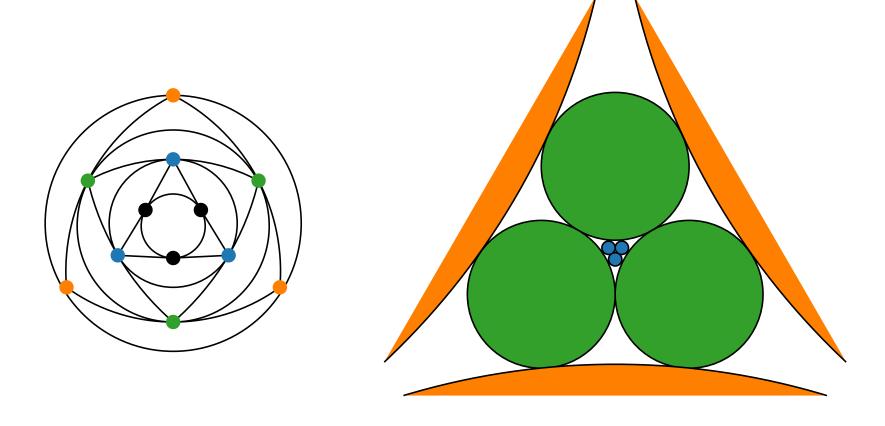


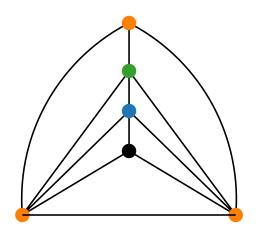


Coin graph: Exponential area

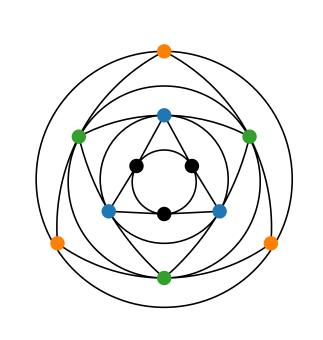


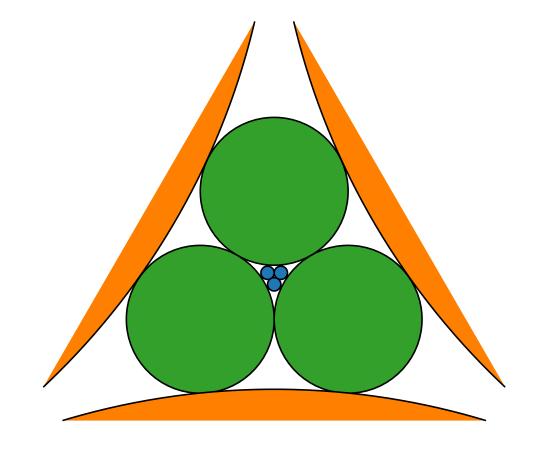
Coin graph: Exponential area

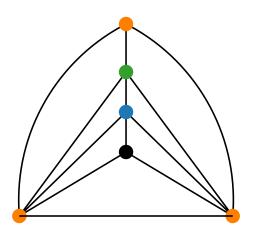


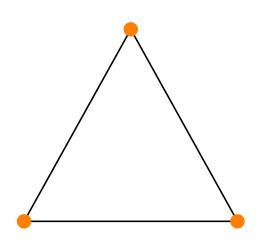


Coin graph: Exponential area

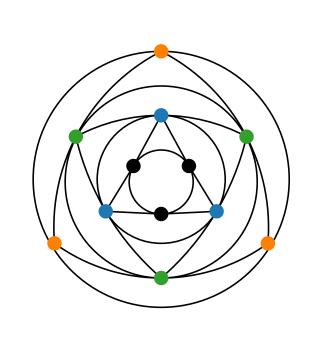


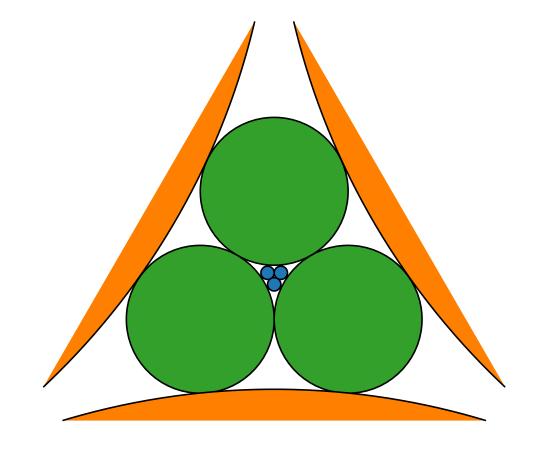


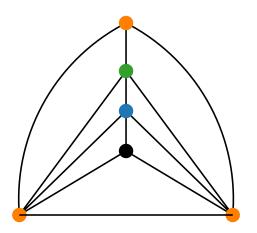


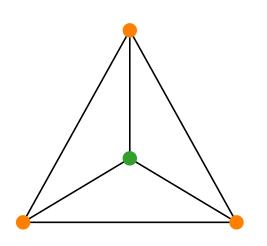


Coin graph: Exponential area

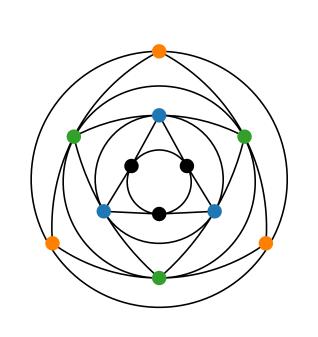


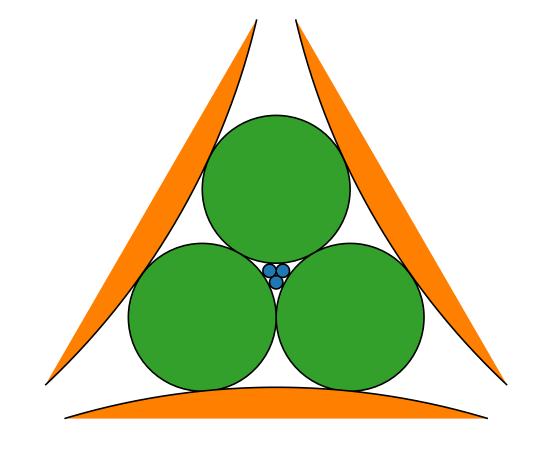


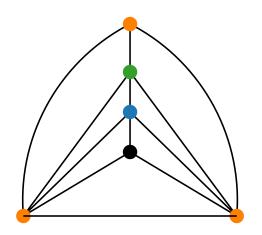


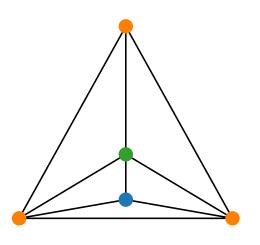


Coin graph: Exponential area

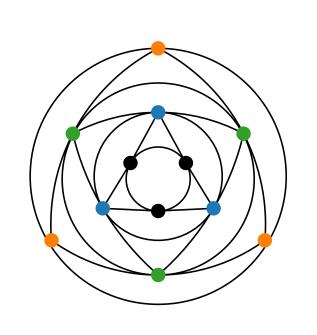


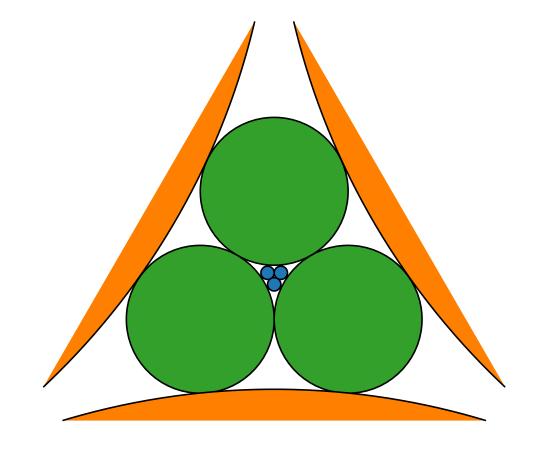


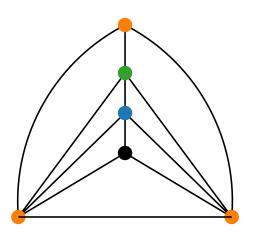


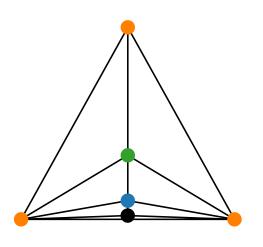


Coin graph: Exponential area









- Every planar graph has at most 3n 6 edges
- \blacksquare A planar triangulation is a planar graph with 3n-6 edges

- **E**very planar graph has at most 3n 6 edges
- A planar triangulation is a planar graph with 3n-6 edges

■ Properties of planar triangulations:

- Every face is a triangle
- graph is 3-connected
- Unique embedding (up to choice of outerface)
- Every plane graph is subgraph of a plane triangulation

- Every planar graph has at most 3n 6 edges
- A planar triangulation is a planar graph with 3n-6 edges
- Properties of planar triangulations:
 - Every face is a triangle
 - graph is 3-connected
 - Unique embedding (up to choice of outerface)
 - Every plane graph is subgraph of a plane triangulation

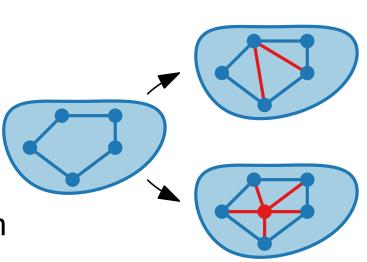
with planar embedding

Planar graphs

- Every planar graph has at most 3n 6 edges
- A planar triangulation is a planar graph with 3n-6 edges

Properties of planar triangulations:

- Every face is a triangle
- graph is 3-connected
- Unique embedding (up to choice of outerface)
- Every plane graph is subgraph of a plane triangulation



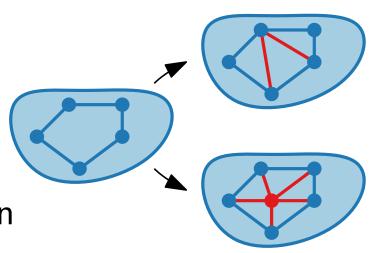
with planar embedding

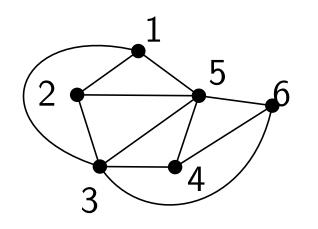
Planar graphs

- Every planar graph has at most 3n 6 edges
- A planar triangulation is a planar graph with 3n-6 edges
- Properties of planar triangulations:
 - Every face is a triangle
 - graph is 3-connected
 - Unique embedding (up to choice of outerface)
 - Every plane graph is subgraph of a plane triangulation

with planar embedding

- We focus on **triangulations**:
 - A *plane (inner) triangulation* is a plane graph where every (inner) face is a triangle.





Goal:

For an n-vertex planar graph create a planar straight-line drawing of size $\mathcal{O}(n^2)$.

Goal:

For an n-vertex planar graph create a planar straight-line drawing of size $\mathcal{O}(n^2)$.

Idea.

Create drawing incrementally by adding vertices

Goal:

For an n-vertex planar graph create a planar straight-line drawing of size $\mathcal{O}(n^2)$.

Idea.

Create drawing incrementally by adding vertices

Idea (refined).

■ Start with singe edge (v_1, v_2) . Let this be G_2 .

Goal:

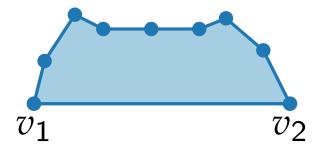
For an n-vertex planar graph create a planar straight-line drawing of size $\mathcal{O}(n^2)$.

Idea.

Create drawing incrementally by adding vertices

Idea (refined).

■ Start with singe edge (v_1, v_2) . Let this be G_2 .



Goal:

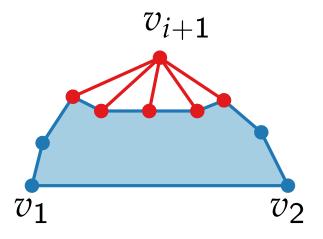
For an n-vertex planar graph create a planar straight-line drawing of size $\mathcal{O}(n^2)$.

Idea.

Create drawing incrementally by adding vertices

Idea (refined).

- Start with singe edge (v_1, v_2) . Let this be G_2 .
- To obtain G_{i+1} , add v_{i+1} to G_i so that neighbours of v_{i+1} are on the outer face of G_i .
- Neighbours of v_{i+1} in G_i have to form path of length at least two.



Definition.

Let G = (V, E) be a triangulated plane graph on $n \ge 3$ vertices. An order $\pi = (v_1, v_2, \dots, v_n)$ is called a **canonical order**, if the following conditions hold for each k, $3 \le k \le n$:

Definition.

Let G = (V, E) be a triangulated plane graph on $n \ge 3$ vertices. An order $\pi = (v_1, v_2, \dots, v_n)$ is called a **canonical order**, if the following conditions hold for each k, $3 \le k \le n$:

(C1) Vertices $\{v_1, \dots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .

Definition.

Let G = (V, E) be a triangulated plane graph on $n \ge 3$ vertices. An order $\pi = (v_1, v_2, \dots, v_n)$ is called a **canonical order**, if the following conditions hold for each k, $3 \le k \le n$:

- (C1) Vertices $\{v_1, \dots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- \blacksquare (C2) Edge (v_1, v_2) belongs to the outer face of G_k .

Definition.

Let G = (V, E) be a triangulated plane graph on $n \ge 3$ vertices. An order $\pi = (v_1, v_2, \dots, v_n)$ is called a **canonical order**, if the following conditions hold for each k, $3 \le k \le n$:

- (C1) Vertices $\{v_1, \dots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- \blacksquare (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and all neighbors of v_{k+1} in G_k appear on the boundary of G_k consecutively.

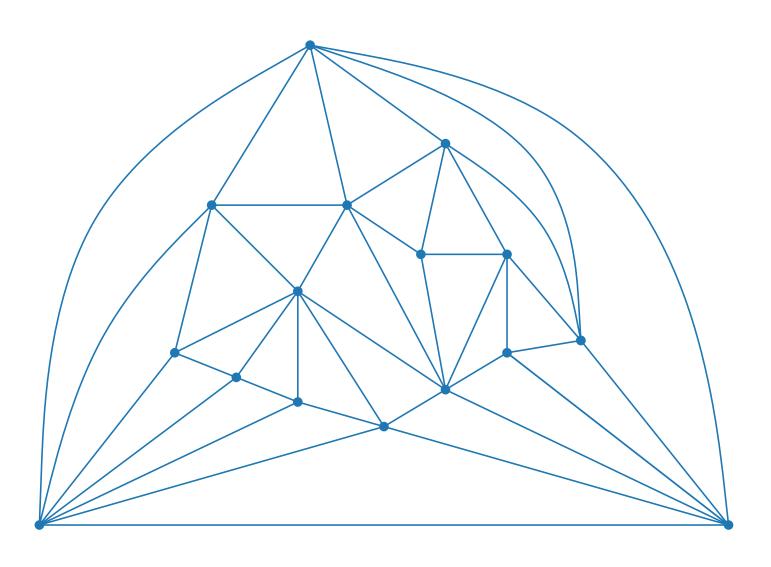
Definition.

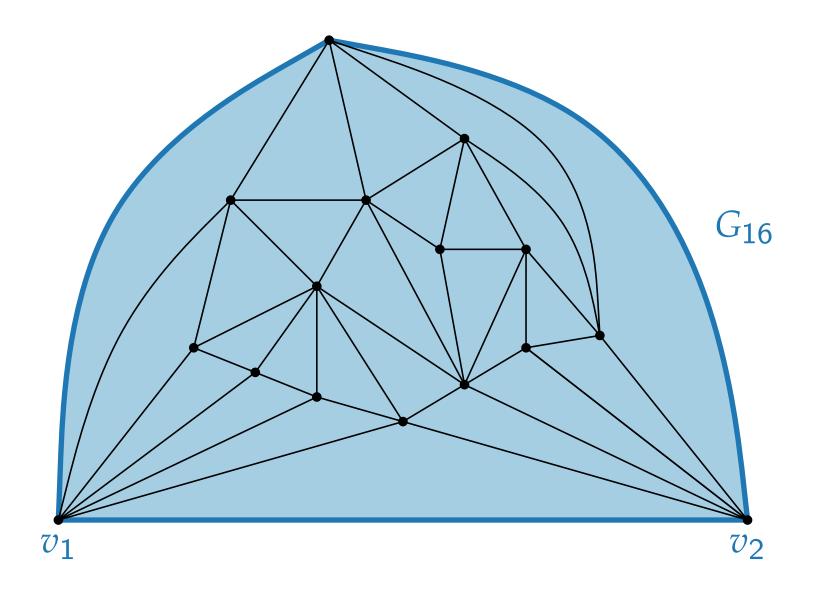
Let G = (V, E) be a triangulated plane graph on $n \ge 3$ vertices. An order $\pi = (v_1, v_2, \dots, v_n)$ is called a **canonical order**, if the following conditions hold for each k, $3 \le k \le n$:

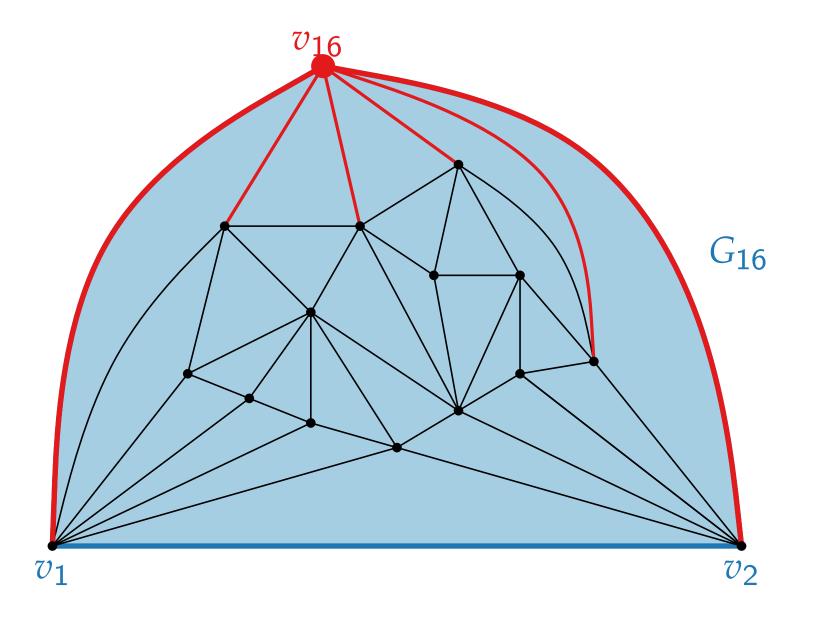
- (C1) Vertices $\{v_1, \dots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- \blacksquare (C2) Edge (v_1, v_2) belongs to the outer face of G_k .
- (C3) If k < n then vertex v_{k+1} lies in the outer face of G_k , and all neighbors of v_{k+1} in G_k appear on the boundary of G_k consecutively.

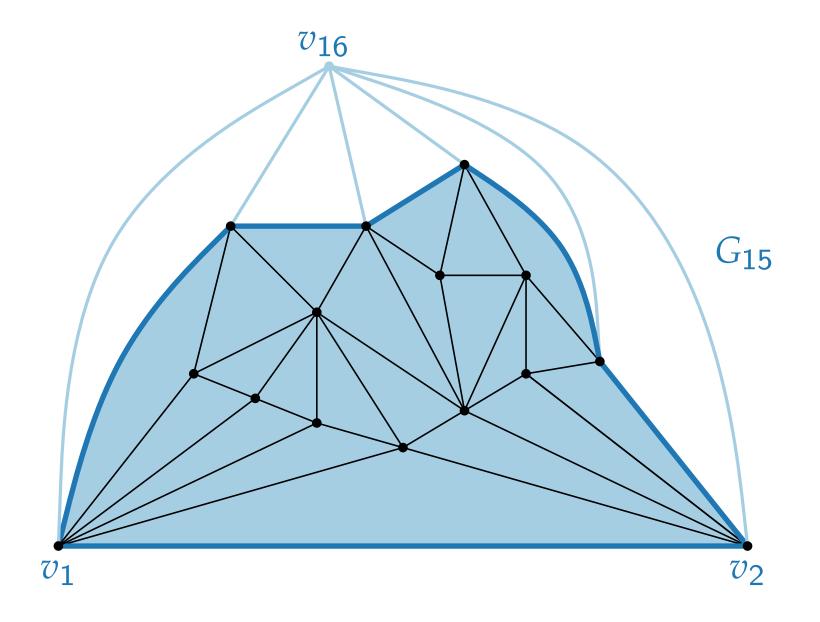
Compute:

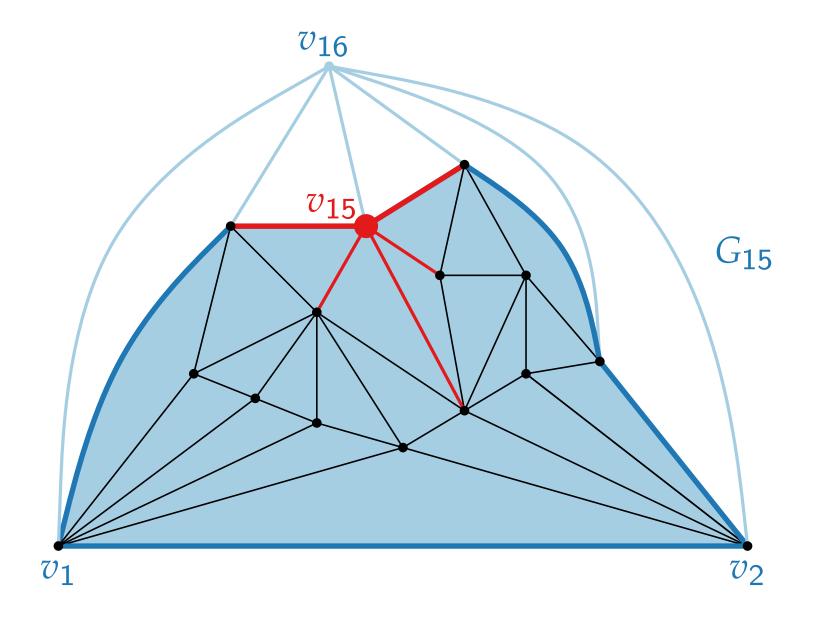
- \blacksquare either $\{v_3, v_4, \dots v_n\}$ (adding vertices)
- \blacksquare or $\{v_n, v_{n-1}, \dots v_3\}$ (removing vertices)

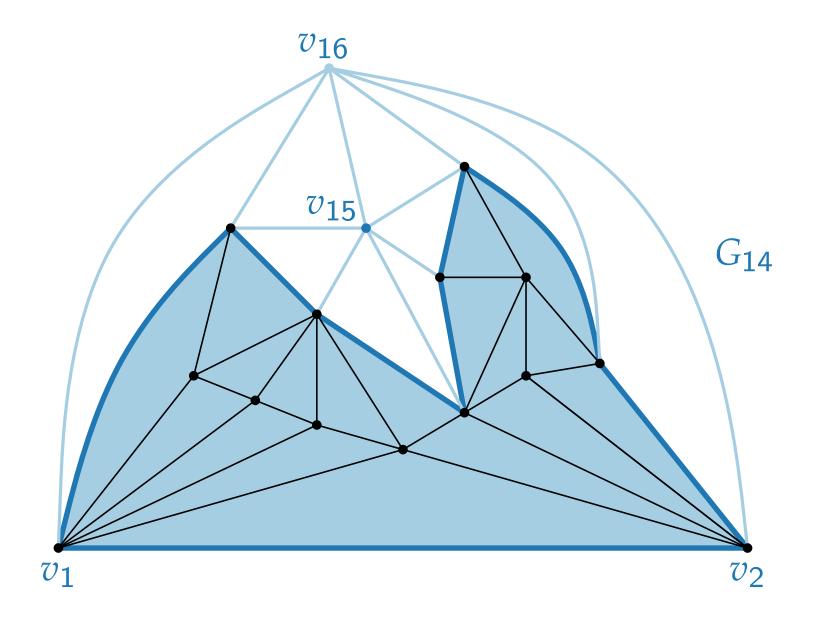


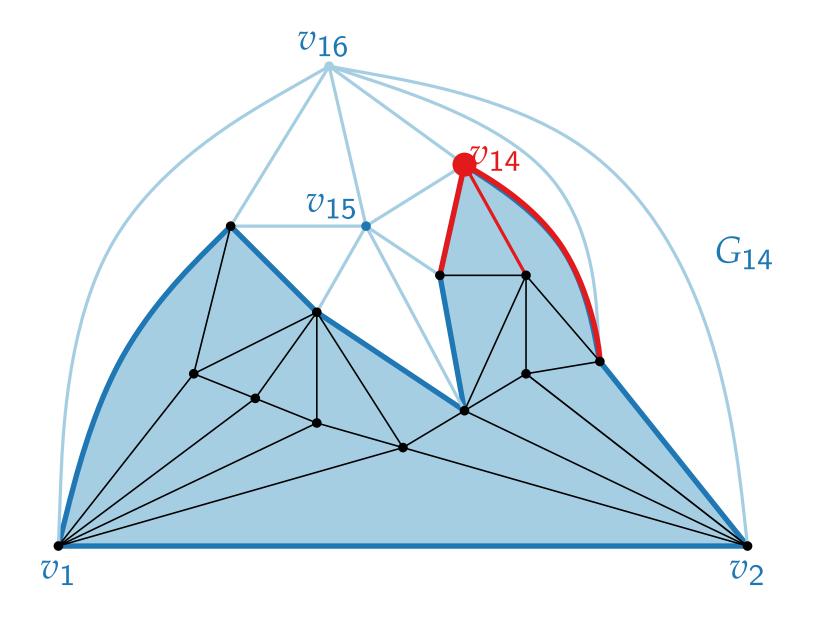


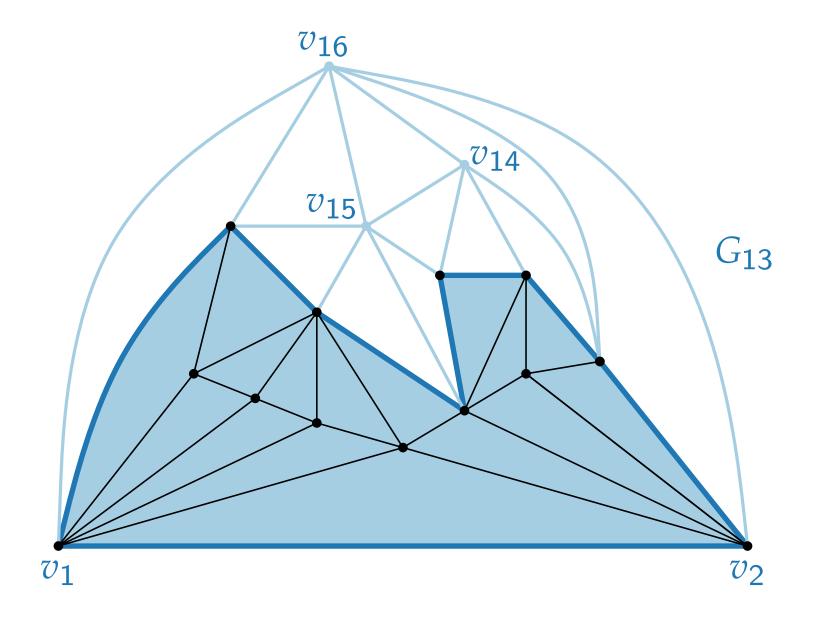


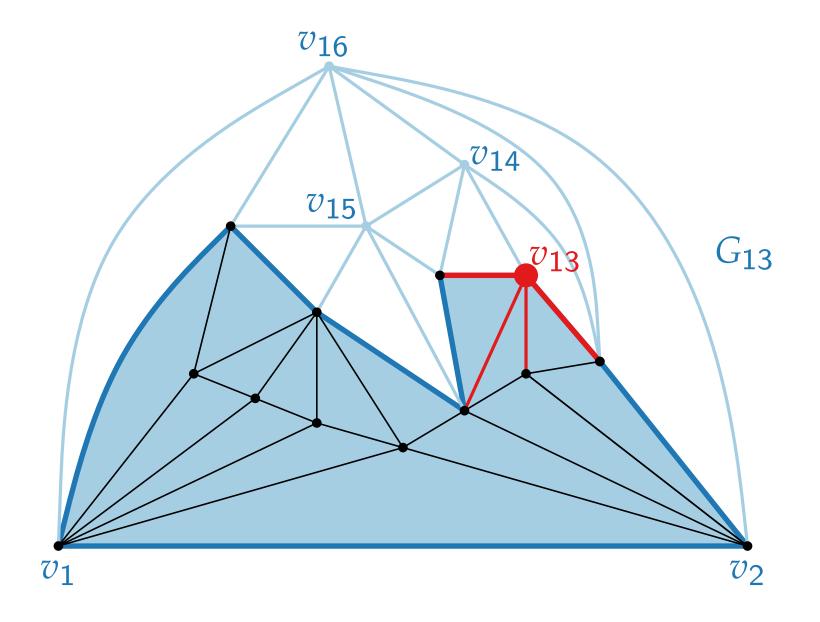


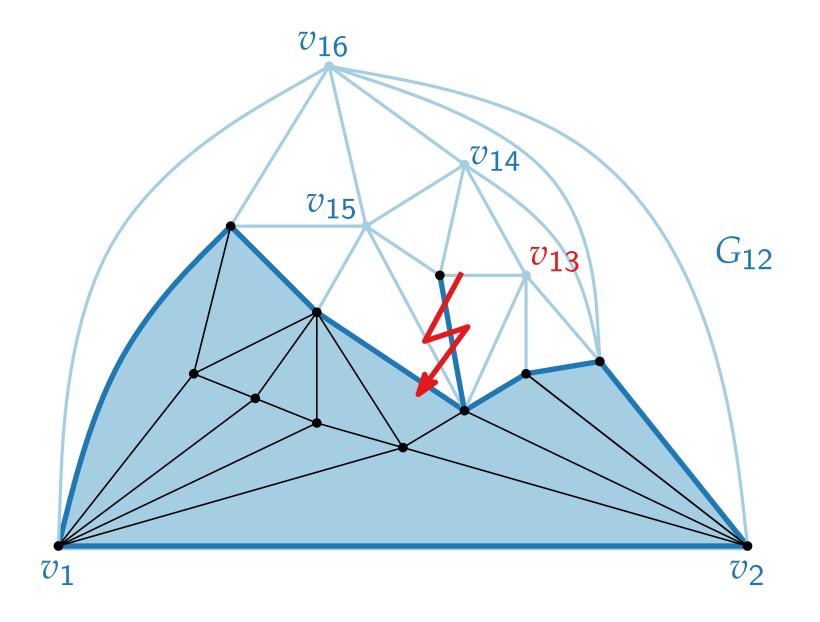


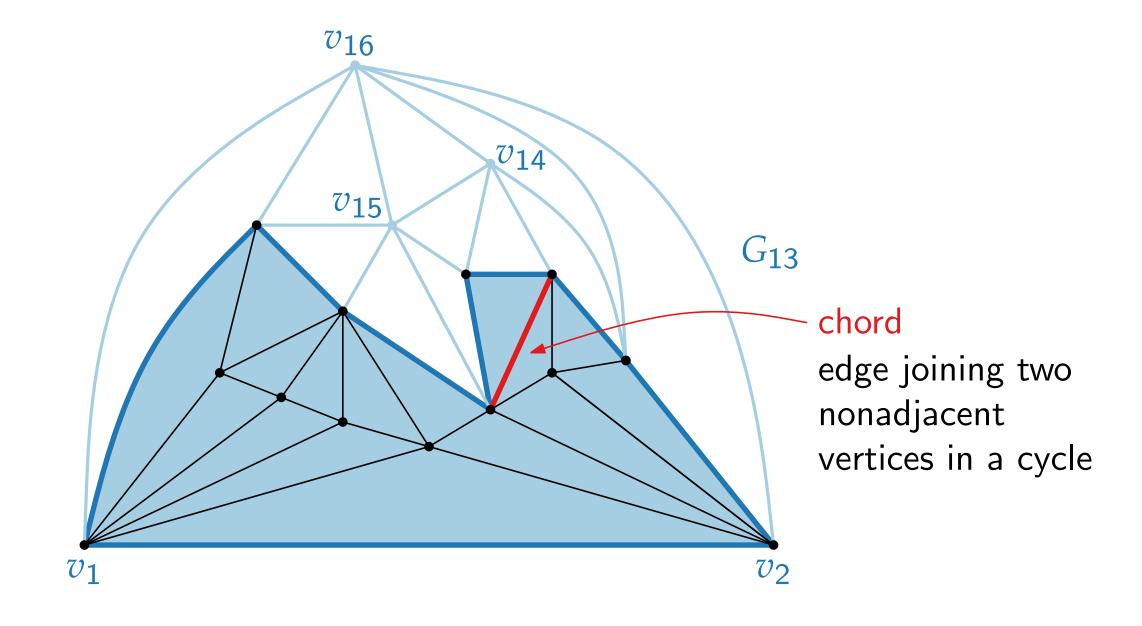


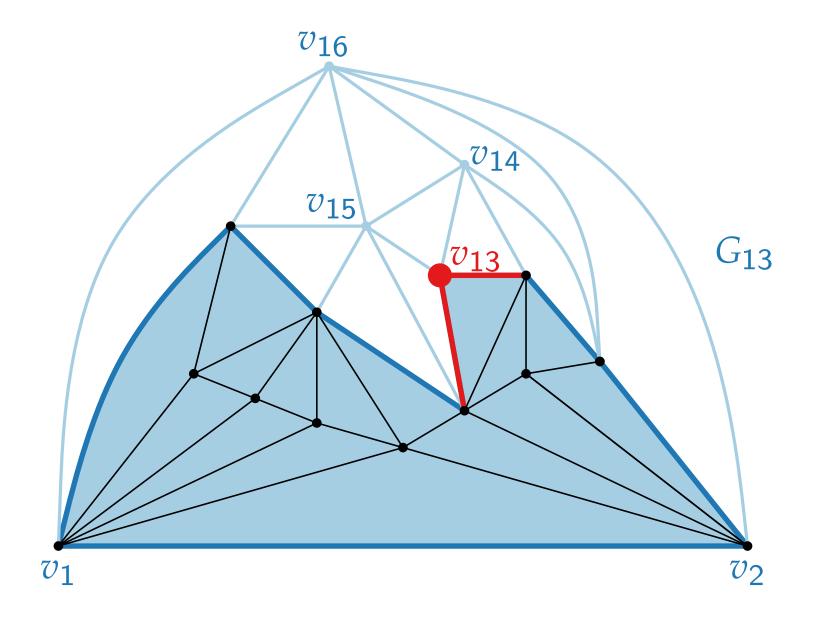


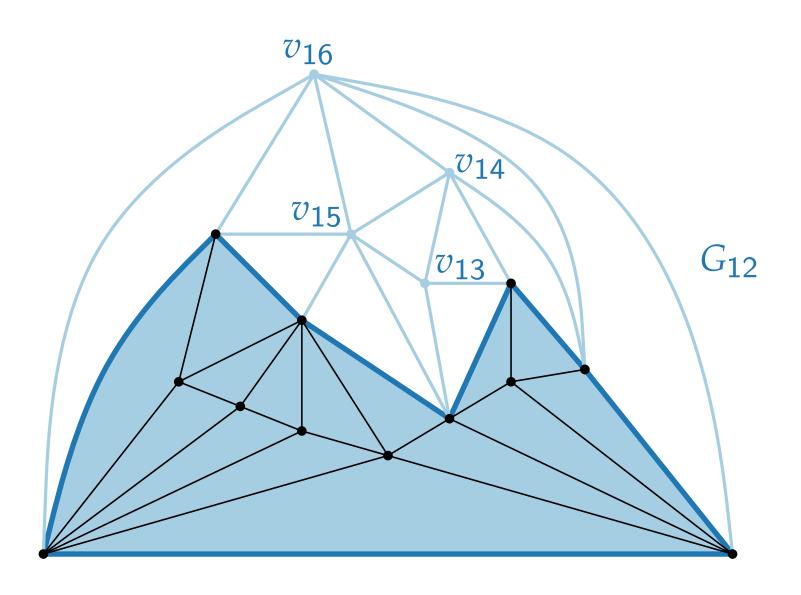


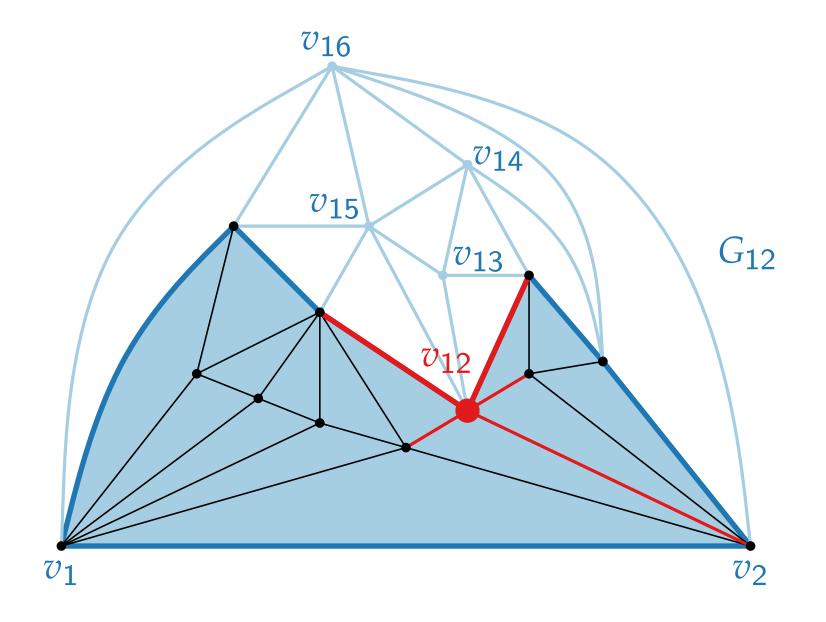


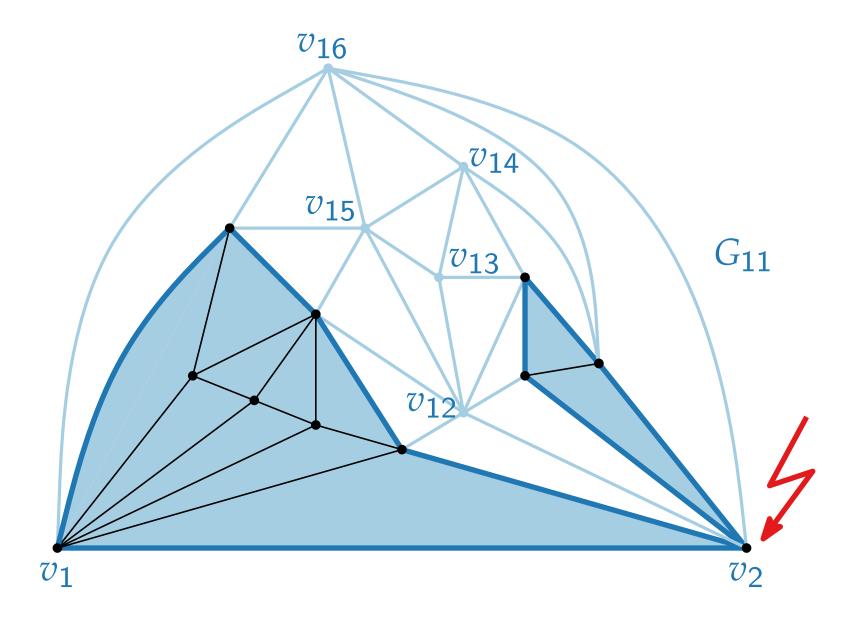


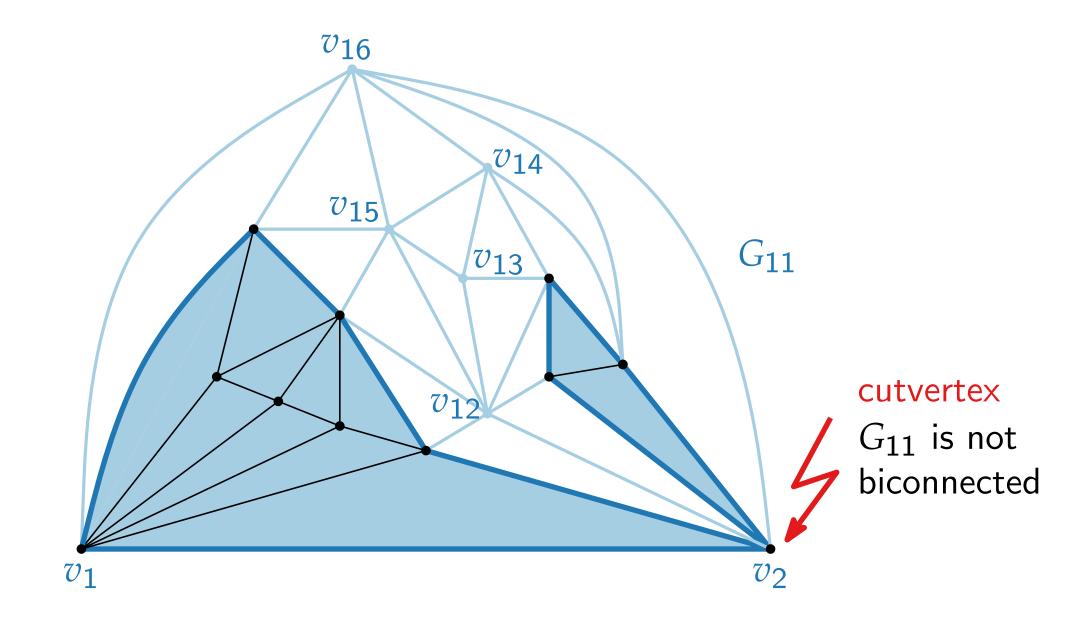


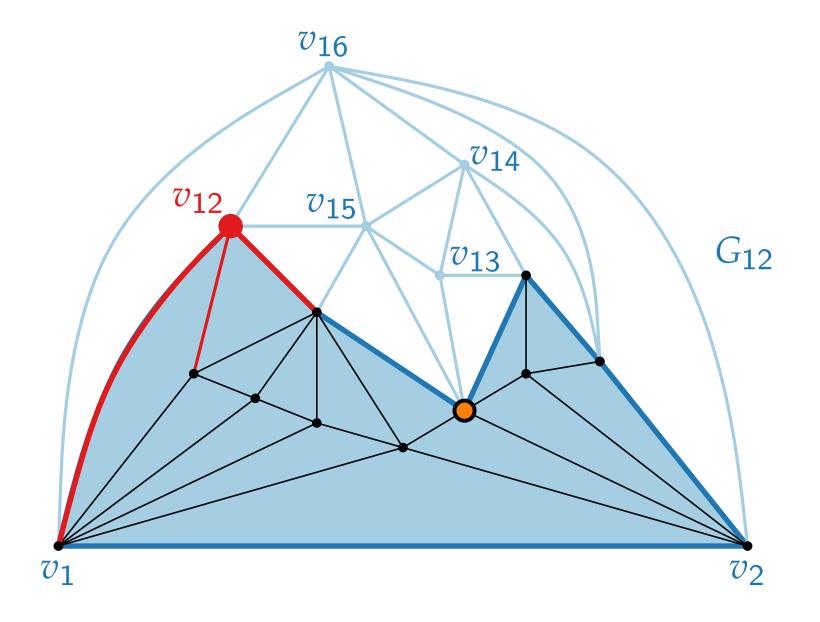


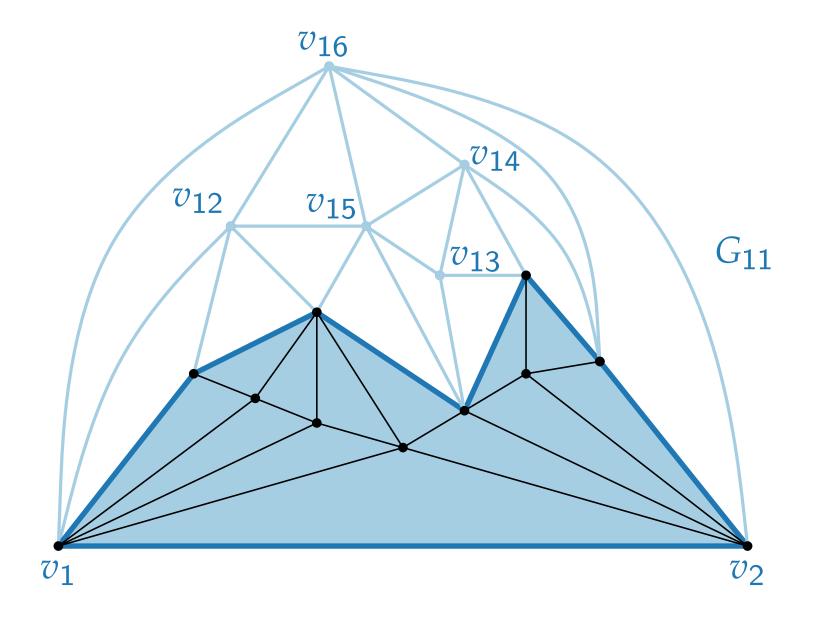


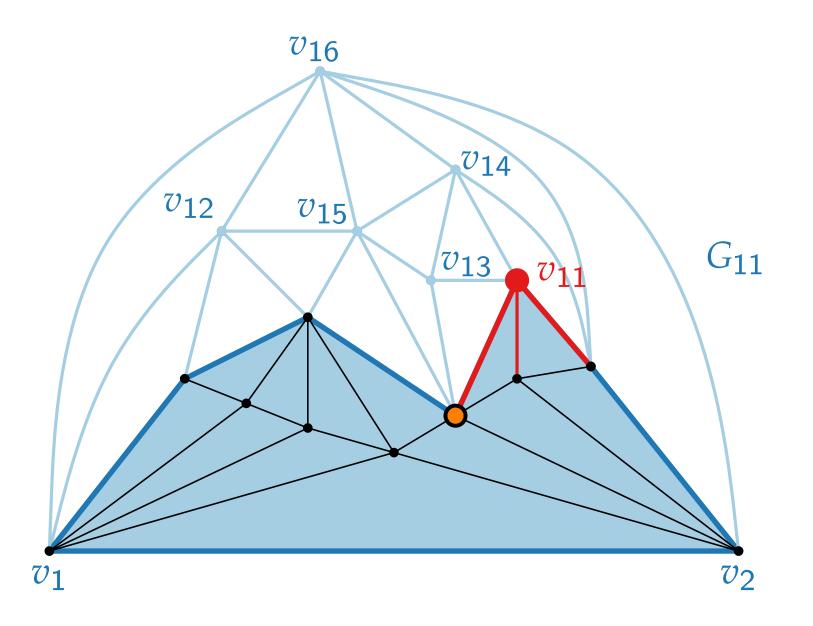


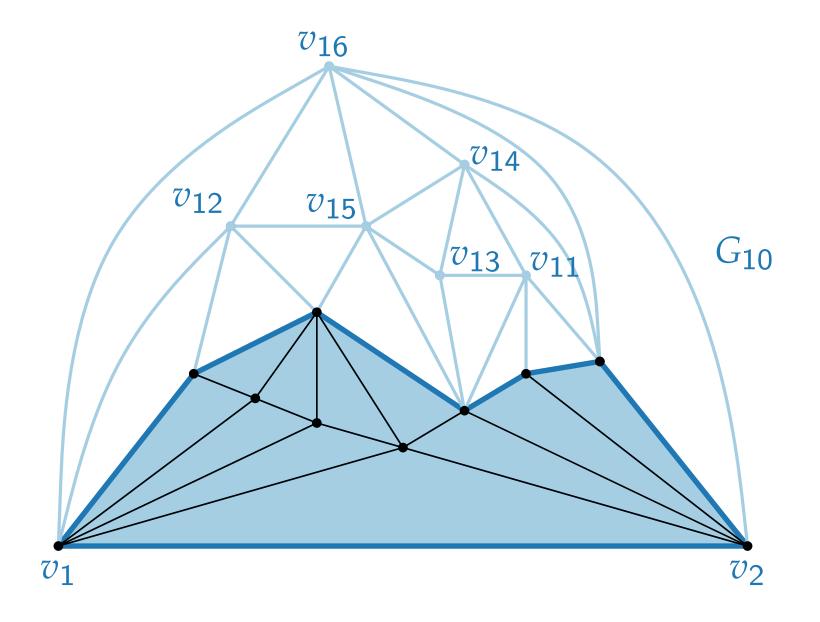


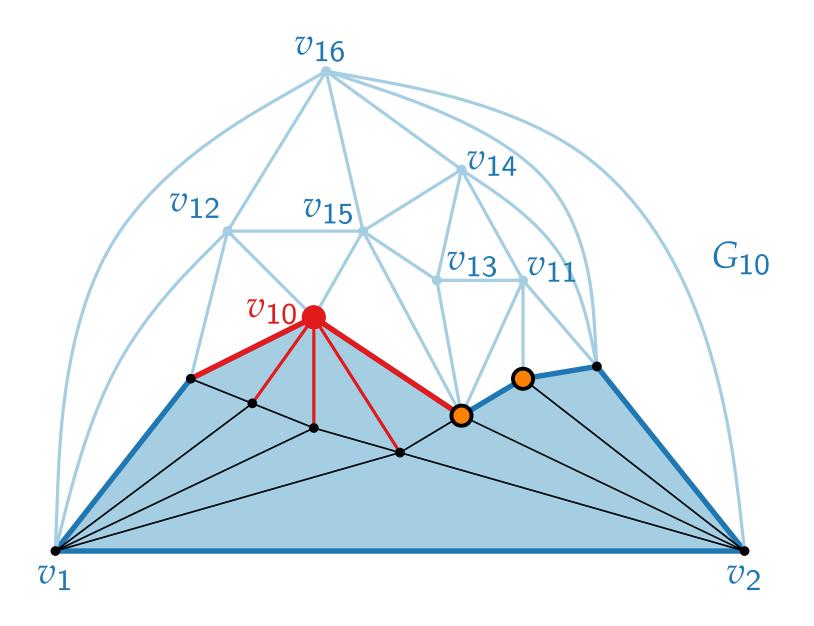


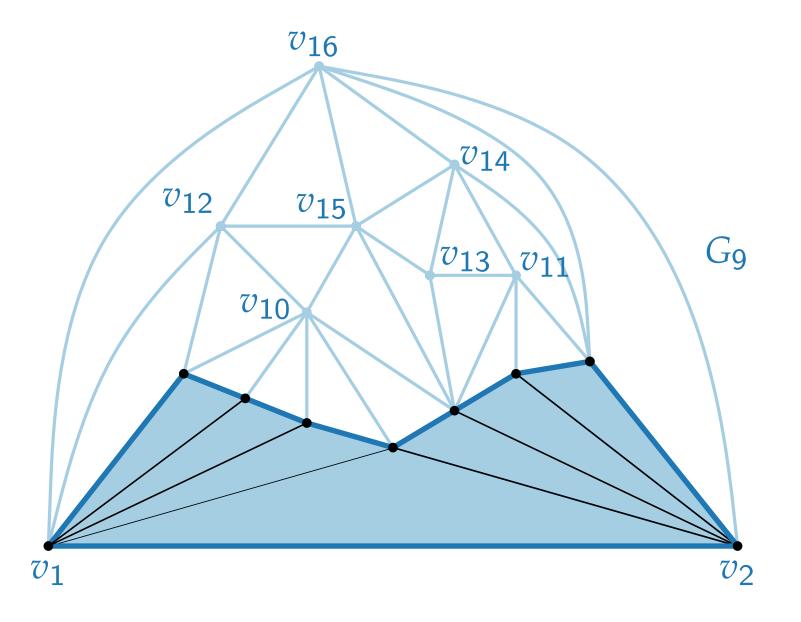


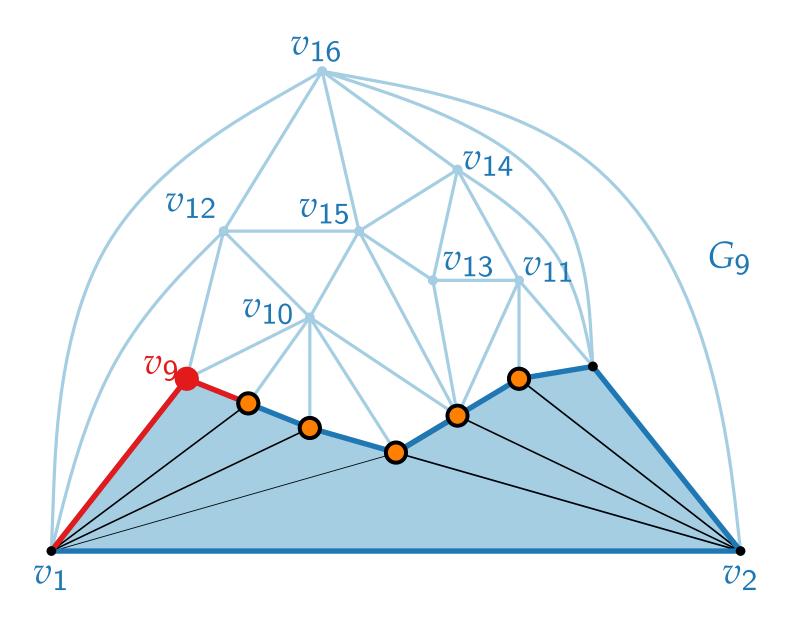


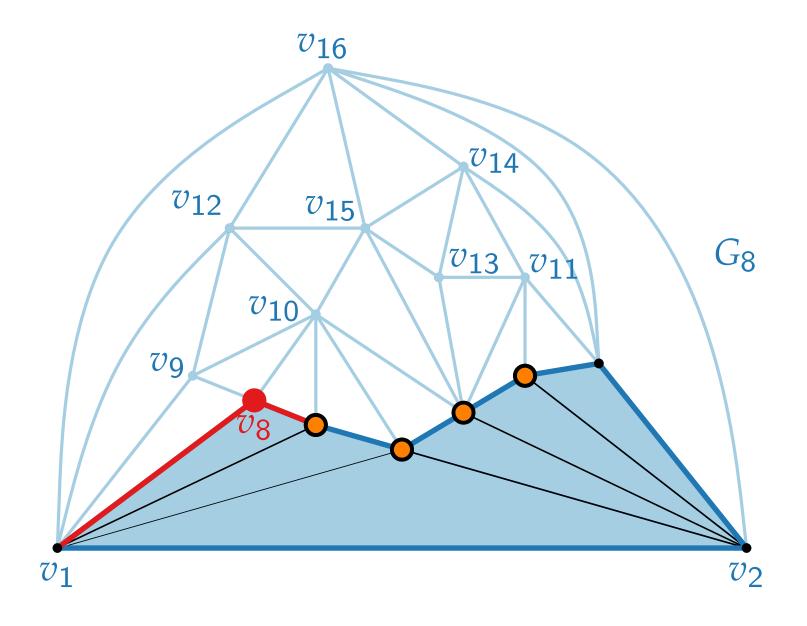


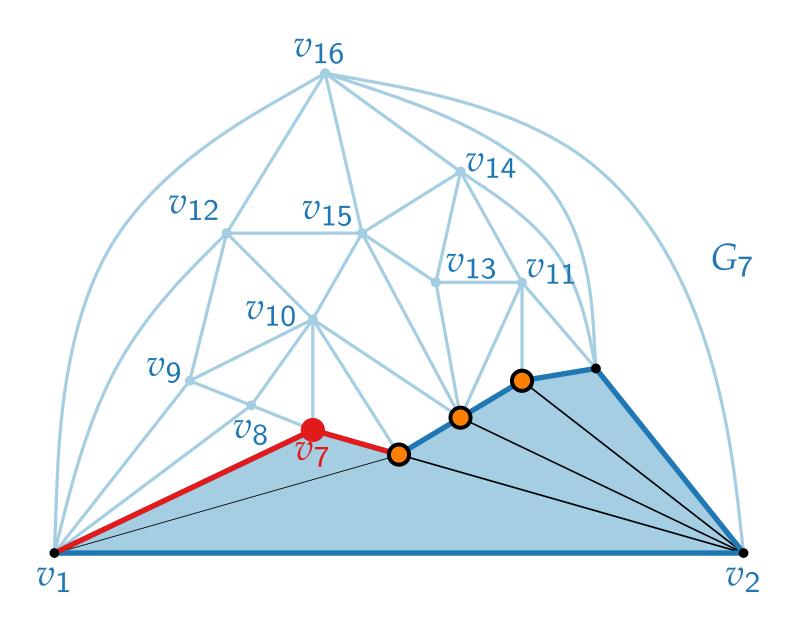


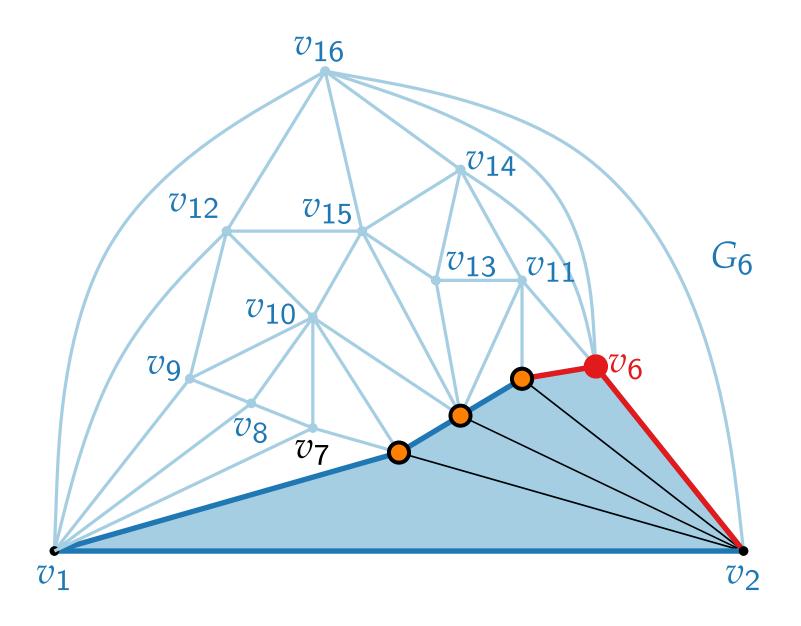


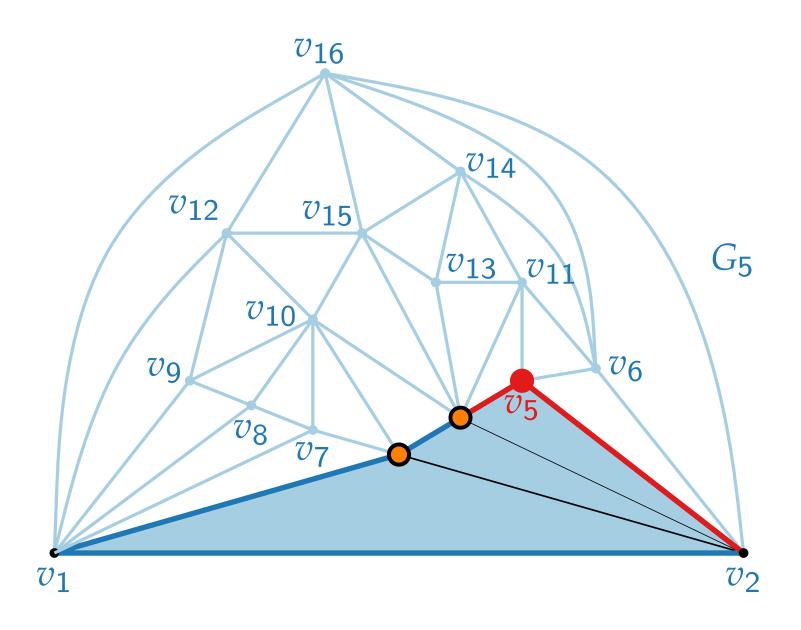


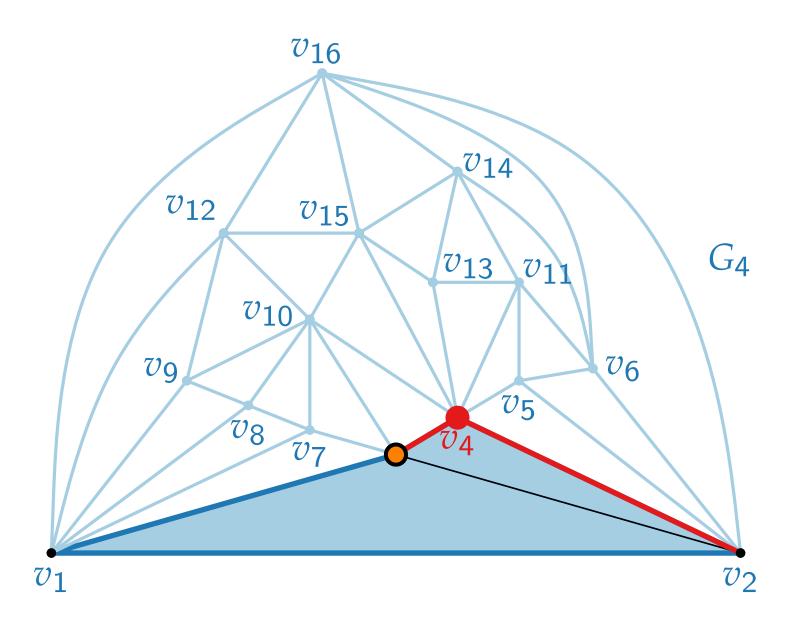


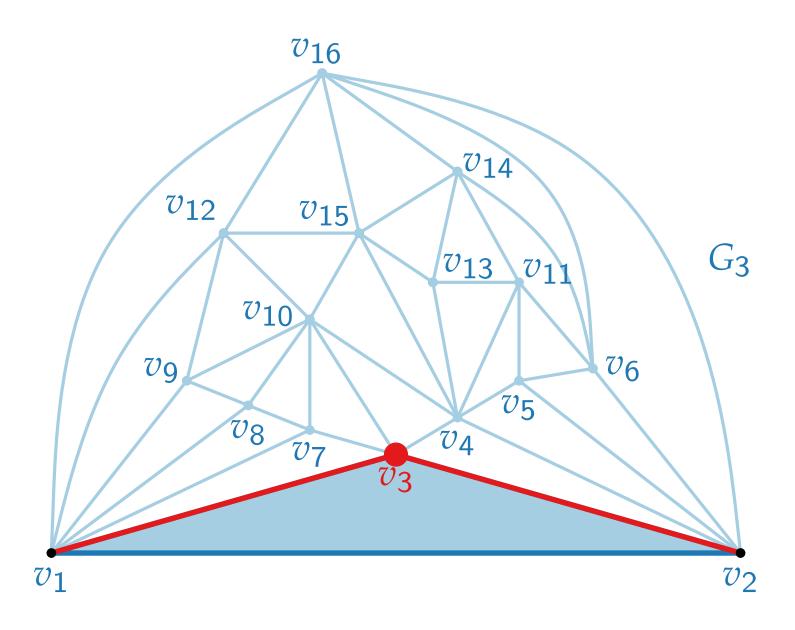


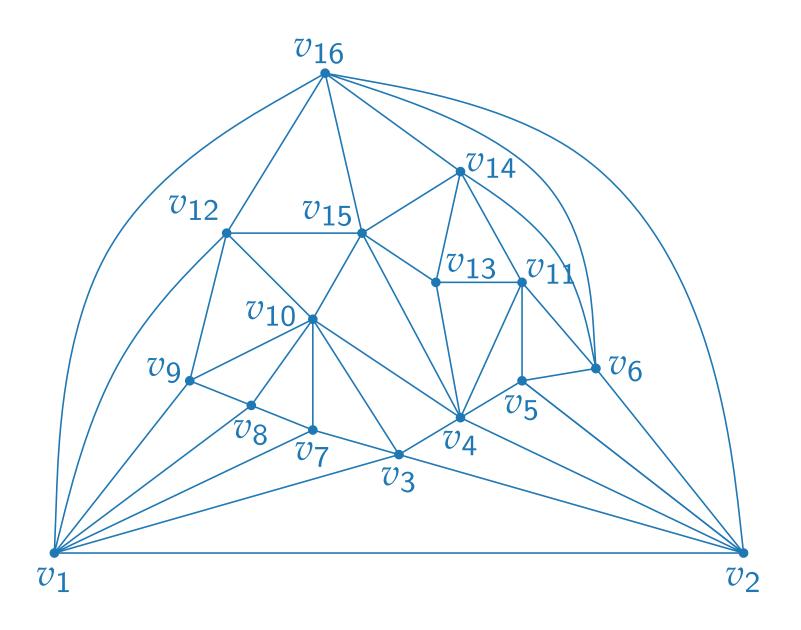












Lemma.

Every triangulated plane graph has a canonical order.

Lemma.

Every triangulated plane graph has a canonical order.

Proof.

Let $G_n = G$, and let v_1, v_2, v_n be the vertices of the outer face of G_n . Conditions C1-C3 hold.

Lemma.

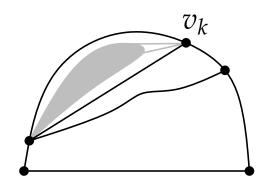
Every triangulated plane graph has a canonical order.

- Let $G_n = G$, and let v_1, v_2, v_n be the vertices of the outer face of G_n . Conditions C1-C3 hold.
- Induction hypothesis: Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions C1-C3 hold for $k+1 \le i \le n$.

Lemma.

Every triangulated plane graph has a canonical order.

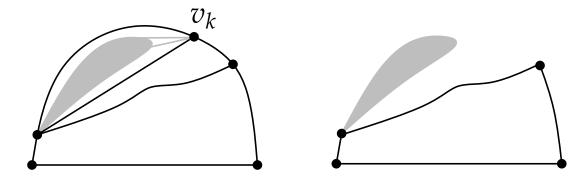
- Let $G_n = G$, and let v_1, v_2, v_n be the vertices of the outer face of G_n . Conditions C1-C3 hold.
- Induction hypothesis: Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions C1-C3 hold for $k+1 \le i \le n$.
- Induction step: Consider G_k . We search for v_k .



Lemma.

Every triangulated plane graph has a canonical order.

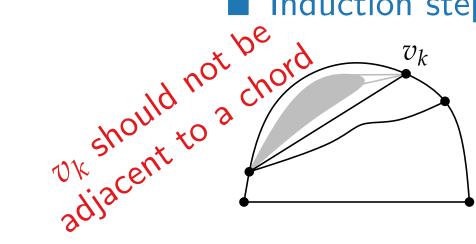
- Let $G_n = G$, and let v_1, v_2, v_n be the vertices of the outer face of G_n . Conditions C1-C3 hold.
- Induction hypothesis: Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions C1-C3 hold for $k+1 \le i \le n$.
- Induction step: Consider G_k . We search for v_k .

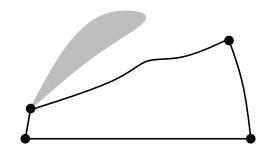


Lemma.

Every triangulated plane graph has a canonical order.

- Let $G_n = G$, and let v_1, v_2, v_n be the vertices of the outer face of G_n . Conditions C1-C3 hold.
- Induction hypothesis: Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions C1-C3 hold for k+1 < i < n.
- Induction step: Consider G_k . We search for v_k .



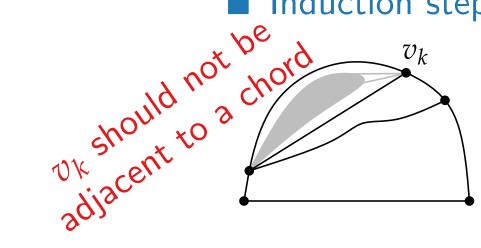


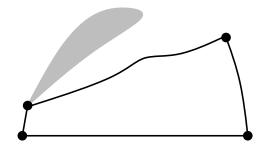
Lemma.

Every triangulated plane graph has a canonical order.

Proof.

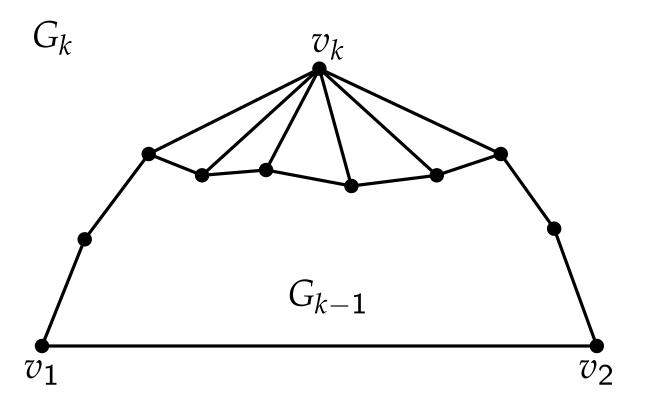
- Let $G_n = G$, and let v_1, v_2, v_n be the vertices of the outer face of G_n . Conditions C1-C3 hold.
- Induction hypothesis: Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions C1-C3 hold for k+1 < i < n.
- Induction step: Consider G_k . We search for v_k .

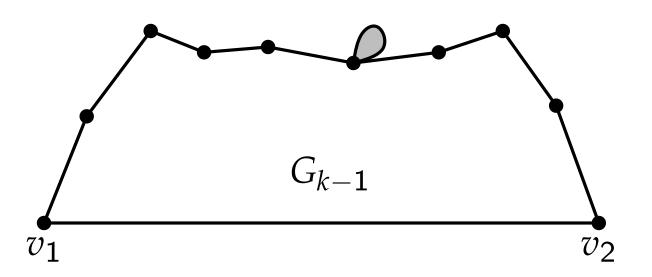


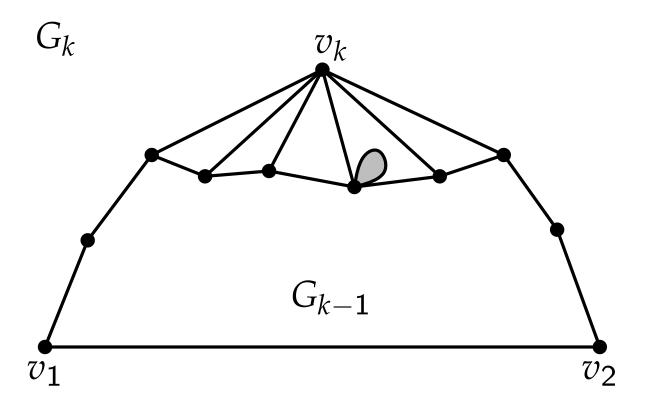


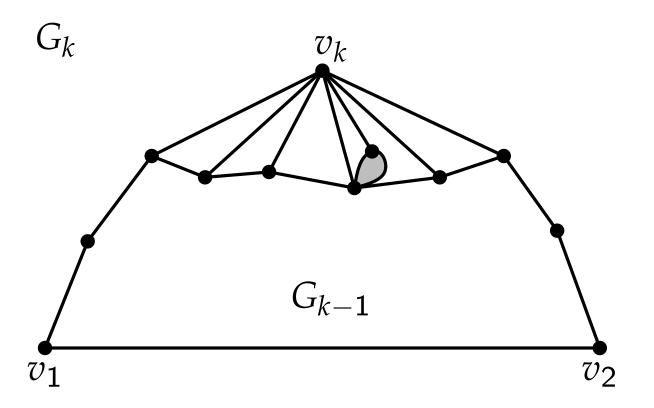
Have to show:

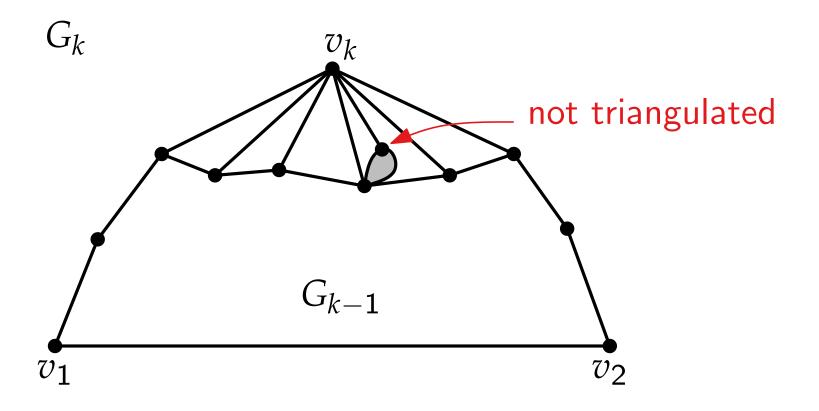
- 1. v_k not adjacent to chord is sufficient
- 2. Such v_k exists











Claim 1. If v_k is not adjacent to a chord then removal of v_k leaves the graph biconnected.

Claim 2.

There exists a vertex in G_k that is not adjacent to a chord as choice for v_k .



Claim 1. If v_k is not adjacent to a chord then removal of v_k leaves the graph biconnected.

Claim 2.

There exists a vertex in G_k that is not adjacent to a chord as choice for v_k .

vertices with degree 2 exist in outerplanar graphs G_k not triangulated G_{k-1}

Claim 1. If v_k is not adjacent to a chord then removal of v_k leaves the graph biconnected.

 G_{k-1}

 G_k

Claim 2.

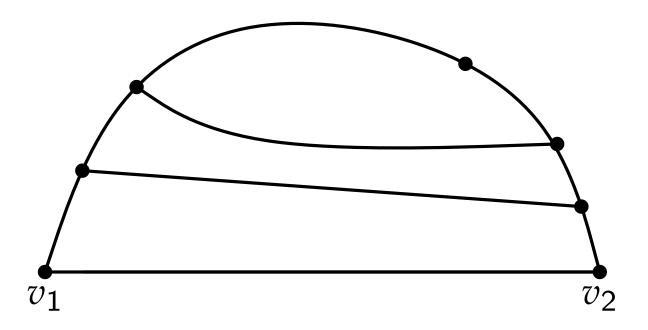
There exists a vertex in G_k that is not adjacent to a chord as choice for v_k .

vertices with degree 2 exist in outerplanar graphs not triangulated

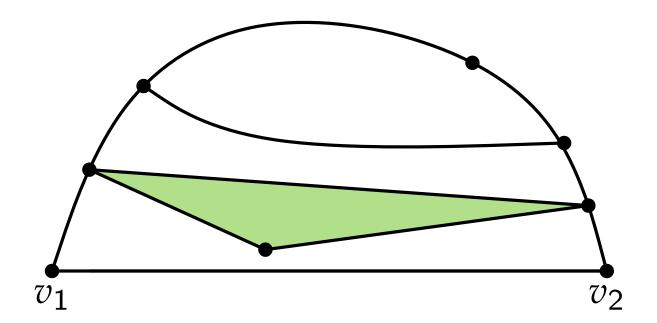
This completes proof of Lemma. \Box

 \blacksquare chords of G_k belong to faces:

 G_k

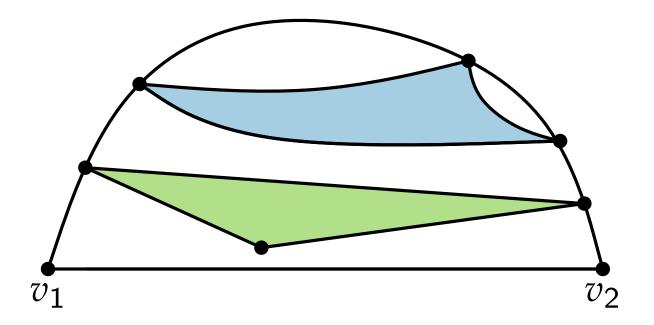


 \blacksquare chords of G_k belong to faces:



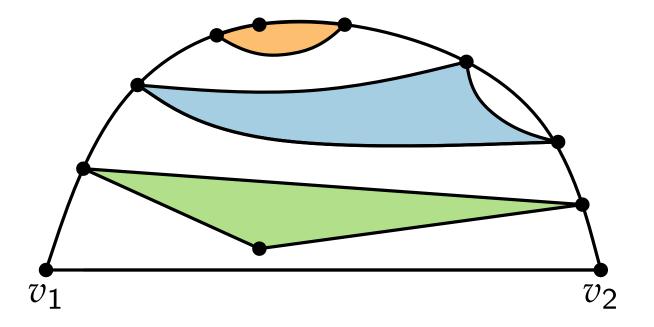
f has two vertices on the outerface and one internal

 \blacksquare chords of G_k belong to faces:



- If has two vertices on the outerface and one internal
- f has three vertices on the outerface and at least two chords

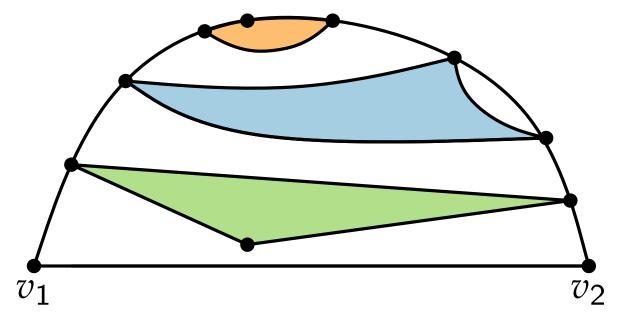
 \blacksquare chords of G_k belong to faces:



- f has two vertices on the outerface and one internal
- f has three vertices on the outerface and at least two chords
- f has three consequtive vertices on the outerface

 \blacksquare chords of G_k belong to faces:

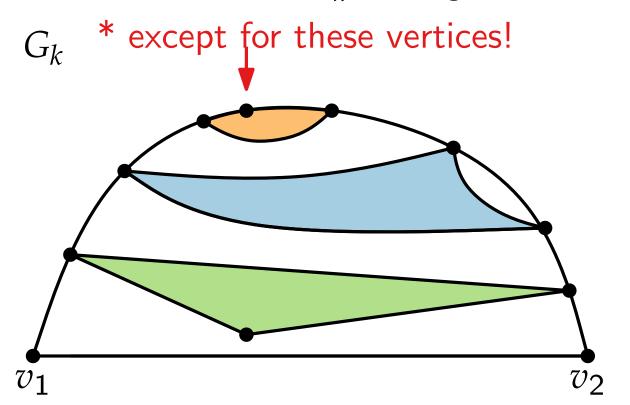
 G_k



- chords are associated with separating faces
- v_k belongs to no separating faces *

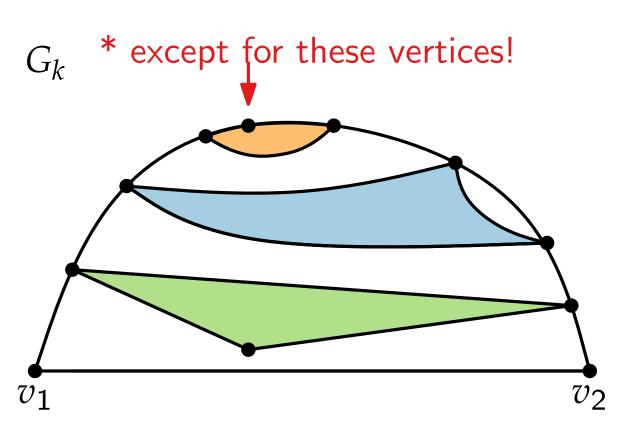
- f has two vertices on the outerface and one internal
- f has three vertices on the outerface and at least two chords
- f has three consequtive vertices on the outerface

 \blacksquare chords of G_k belong to faces:



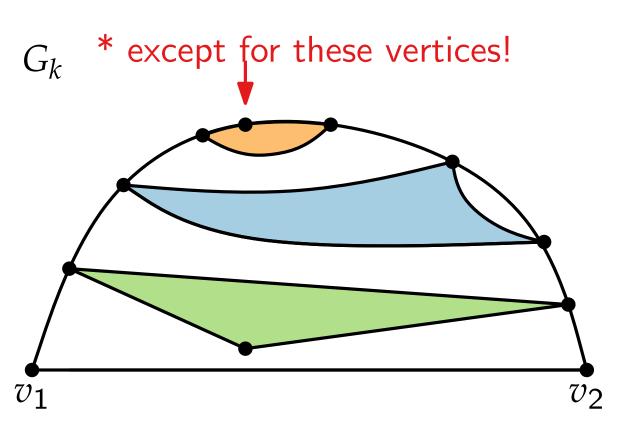
- chords are associated with separating faces
- \mathbf{v}_k belongs to no separating faces *

- f has two vertices on the outerface and one internal
- f has three vertices on the outerface and at least two chords
- f has three consequtive vertices on the outerface



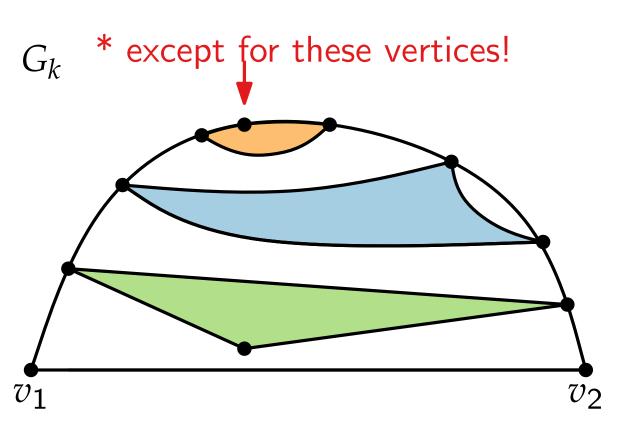
- chords are associated with separating faces
- \mathbf{v}_k belongs to no separating faces *

- \bullet $f_{out} = \text{current outerface}$
- $\mathbf{F}(v) = \text{faces that contain } v$
- \blacksquare F(e) =faces that contain e



- chords are associated with separating faces
- $lacktriangledown_k$ belongs to no separating faces *

- $\mathbf{F}(v) = \text{faces that contain } v$
- \blacksquare F(e) =faces that contain e
- outV(f) = # vertices of f on f_{out}
- outE(f) = # edges of f on f_{out}
- $ightharpoonup \operatorname{sepF}(v) = \# \operatorname{separation} \operatorname{faces} \operatorname{that} \operatorname{contain} v$



- chords are associated with separating faces
- $lacktriangledown_k$ belongs to no separating faces *

- $\mathbf{F}(v) = \text{faces that contain } v$
- \blacksquare F(e) =faces that contain e
- outV(f) = # vertices of f on f_{out}
- outE(f) = # edges of f on f_{out}
- $ightharpoonup \operatorname{sepF}(v) = \# \operatorname{separation} \operatorname{faces} \operatorname{that}$

 $f \in F(v)$ is separating iff

- \bullet outV(f)=3 or
- \bullet outV(f)=2 and outE(f)=0

- $\mathbf{F}(v) = \text{faces that contain } v$
- \blacksquare F(e) =faces that contain e
- outV(f) = # vertices of f on f_{out}
- outE(f) = # edges of f on f_{out}
- $ightharpoonup \operatorname{sepF}(v) = \# \operatorname{separation} \operatorname{faces} \operatorname{that}$

Algorithm CanonicalOrder- Initialization

```
forall v \in V do

\sqsubseteq \operatorname{sepF}(v) \leftarrow 0;

forall f \in F do

\sqsubseteq \operatorname{outV}(f), \operatorname{outE}(f) \leftarrow 0;
```

- $\mathbf{F}(v) = \text{faces that contain } v$
- F(e) =faces that contain e
- outV(f) = # vertices of f on f_{out}
- outE(f) = # edges of f on f_{out}
- $ightharpoonup \operatorname{sepF}(v) = \# \operatorname{separation} \operatorname{faces} \operatorname{that}$

Algorithm CanonicalOrder- Initialization

```
forall v \in V do
 |\operatorname{sepF}(v) \leftarrow 0;
forall f \in F do
 | outV(f), outE(f) \leftarrow 0;
forall v \in f_{out} do
    forall f \in F(v): f \neq f_{out} do
     outV(f)++;
forall e \in f_{out} do
    forall f \in F(e): f \neq f_{out} do
      | outE(f)++;
```

- $\mathbf{F}(v) = \text{faces that contain } v$
- F(e) =faces that contain e
- outV(f) = # vertices of f on f_{out}
- out $\mathsf{E}(f) = \#$ edges of f on f_{out}
- $ightharpoonup \operatorname{sepF}(v) = \# \operatorname{separation} \operatorname{faces} \operatorname{that}$

Algorithm CanonicalOrder- Initialization

```
forall v \in V do
 |\operatorname{sepF}(v) \leftarrow 0;
forall f \in F do
 | outV(f), outE(f) \leftarrow 0;
forall v \in f_{out} do
    forall f \in F(v): f \neq f_{out} do
     outV(f)++;
forall e \in f_{out} do
    forall f \in F(e): f \neq f_{out} do
      | outE(f)++;
```

- $f_{out} = current outerface$
- $\mathbf{F}(v) = \text{faces that contain } v$
- \blacksquare F(e) =faces that contain e
- outV(f) = # vertices of f on f_{out}
- outE(f) = # edges of f on f_{out}
- $ightharpoonup \operatorname{sepF}(v) = \# \operatorname{separation} \operatorname{faces} \operatorname{that}$

```
forall v \in f_{out} do

forall f \in F(v): f \neq f_{out} do

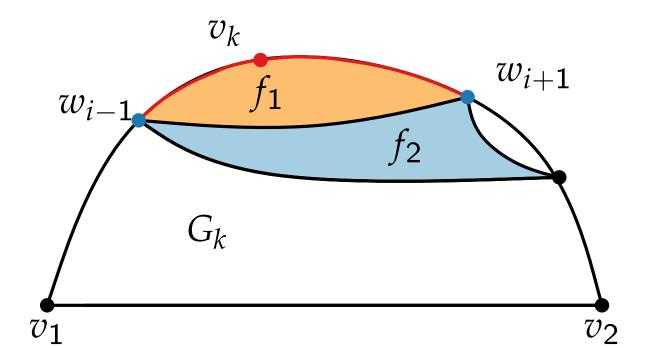
if outV(f)=3 or outV(f)=2

and outE(f)=0 then

ext{L} \operatorname{sepF}(v)++;
```

Remove degree 2 vertex v_k

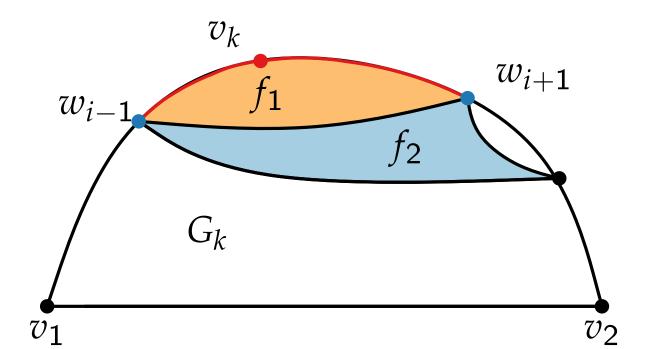
- $\mathbf{F}(v) = \text{faces that contain } v$
- \blacksquare F(e) =faces that contain e
- outV(f) = # vertices of f on f_{out}
- out $\mathsf{E}(f) = \#$ edges of f on f_{out}
- $ightharpoonup \operatorname{sepF}(v) = \# \operatorname{separation} \operatorname{faces} \operatorname{that} \operatorname{contain} v$



Remove degree 2 vertex v_k

- lacksquare v_k and f_1 are removed
- lacksquare out $E(f_2)$ increases by one
- \blacksquare sepF(w_{i-1}) decreases by one
- \blacksquare sepF(w_{i+1}) decreases by one

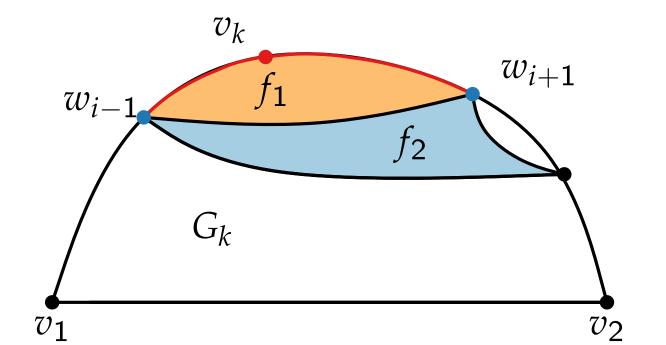
- $\mathbf{F}(v) = \text{faces that contain } v$
- \blacksquare F(e) =faces that contain e
- outV(f) = # vertices of f on f_{out}
- out $\mathsf{E}(f) = \#$ edges of f on f_{out}
- $ightharpoonup \operatorname{sepF}(v) = \# \operatorname{separation} \operatorname{faces} \operatorname{that}$



Remove degree 2 vertex v_k

- lacksquare v_k and f_1 are removed
- lacksquare out $E(f_2)$ increases by one
- \blacksquare sepF(w_{i-1}) decreases by one
- \blacksquare sepF(w_{i+1}) decreases by one
- if f_2 has outV (f_2) =2, f_2 is not a separating face
 - \blacksquare sepF(w_{i-1}) decreases by one
 - \blacksquare sepF(w_{i+1}) decreases by one

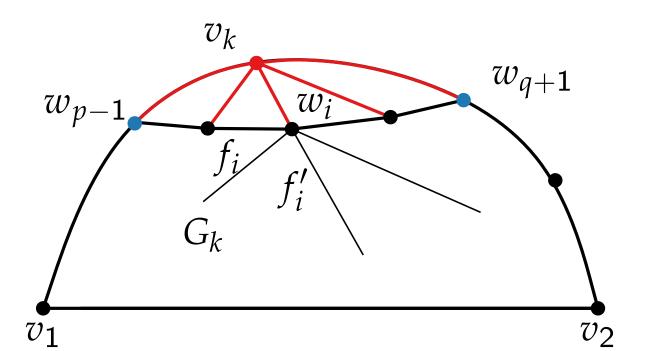
- $\mathbf{F}(v) = \text{faces that contain } v$
- \blacksquare F(e) =faces that contain e
- outV(f) = # vertices of f on f_{out}
- outE(f) = # edges of f on f_{out}
- $ightharpoonup \operatorname{sepF}(v) = \# \operatorname{separation} \operatorname{faces} \operatorname{that} \operatorname{contain} v$



Remove v_k with $sepF(v_k) = 0$

- face f_i contains edge (w_{i-1}, w_i) of the outerface of G_{k-1}
- are in the interior of G_{k-1}

- \blacksquare F(v) =faces that contain v
- \blacksquare F(e) =faces that contain e
- outV(f) = # vertices of f on f_{out}
- outE(f) = # edges of f on f_{out}
- $ightharpoonup \operatorname{sepF}(v) = \# \operatorname{separation} \operatorname{faces} \operatorname{that}$

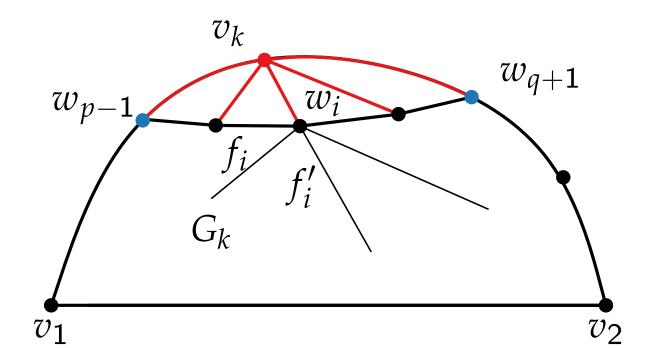


Remove v_k with $sepF(v_k) = 0$

- $lackbox{v}_k$ and faces that contain v_k are removed
- outV(f_i) increases by two, $p+1 \le i \le q$
- lacksquare outV (f_p) , outV (f_{q+1}) increases by one
- outV (f_i') incrases by one, $p \leq i \leq q$
- out $\mathsf{E}(f_i)$ increases by one, $p \leq i \leq q+1$

- $\mathbf{F}(v) = \text{faces that contain } v$
- \blacksquare F(e) = faces that contain e
- outV(f) = # vertices of f on f_{out}
- outE(f) = # edges of f on f_{out}
- $ightharpoonup \operatorname{sepF}(v) = \# \operatorname{separation} \operatorname{faces} \operatorname{that}$

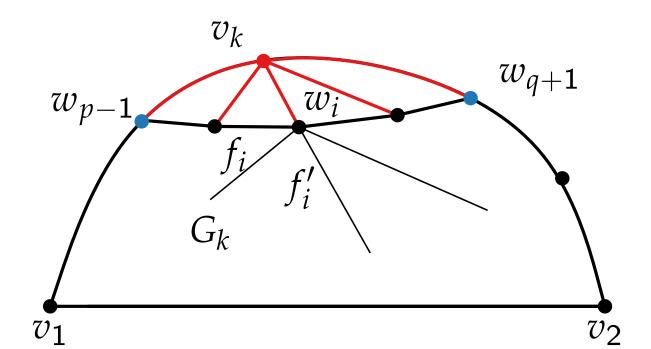
- face f_i contains edge (w_{i-1}, w_i) of the outerface of G_{k-1}
- are in the interior of G_{k-1}



Remove v_k with $sepF(v_k) = 0$

- $lackbox{v}_k$ and faces that contain v_k are removed
- outV(f_i) increases by two, $p+1 \le i \le q$
- lacksquare outV (f_p) , outV (f_{q+1}) increases by one
- outV (f_i') incrases by one, $p \leq i \leq q$
- out $\mathsf{E}(f_i)$ increases by one, $p \leq i \leq q+1$
- \blacksquare if f_i or f'_i becomes separating
 - increase sepF(u) by one for all its vertices u
- face f_i contains edge (w_{i-1}, w_i) of the outerface of G_{k-1}
- are in the interior of G_{k-1}

- $\mathbf{F}(v) = \text{faces that contain } v$
- F(e) = faces that contain e
- outV(f) = # vertices of f on f_{out}
- outE(f) = # edges of f on f_{out}
- $ightharpoonup \operatorname{sepF}(v) = \# \operatorname{separation} \operatorname{faces} \operatorname{that} \operatorname{contain} v$



Algorithm CanonicalOrder

```
initialize;
```

for
$$k = n$$
 to 3 do

choose $v_k \neq v_1, v_2$ such that

- $-\operatorname{sepf}(v)=0$ or
- or $F(v) = \{f\}$, outV(f)=3 and outE(f)=2

- $\mathbf{F}(v) = \text{faces that contain } v$
- \blacksquare F(e) =faces that contain e
- outV(f) = # vertices of f on f_{out}
- outE(f) = # edges of f on f_{out}
- $ightharpoonup \operatorname{sepF}(v) = \# \operatorname{separation} \operatorname{faces} \operatorname{that} \operatorname{contain} v$

Algorithm CanonicalOrder

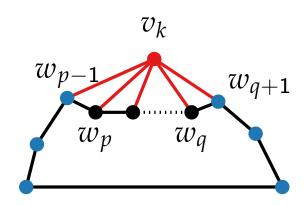
initialize;

for
$$k = n$$
 to 3 do

choose $v_k \neq v_1$, v_2 such that

- $-\operatorname{sepf}(v)=0$ or
- or $F(v) = \{f\}$, outV(f)=3 and outE(f)=2

- $\mathbf{F}(v) = \text{faces that contain } v$
- \blacksquare F(e) =faces that contain e
- outV(f) = # vertices of f on f_{out}
- outE(f) = # edges of f on f_{out}
- $ightharpoonup \operatorname{sepF}(v) = \# \operatorname{separation} \operatorname{faces} \operatorname{that}$



Algorithm CanonicalOrder

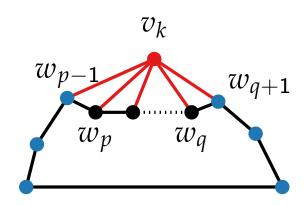
initialize;

for k = n to 3 do

choose $v_k \neq v_1$, v_2 such that

- $-\operatorname{sepf}(v)=0$ or
- or $F(v) = \{f\}$, outV(f)=3 and outE(f)=2 replace v_k with path $P = w_p \dots w_q$ in f_{out} ;

- \bullet $f_{out} = \text{current outerface}$
- $\mathbf{F}(v) =$ faces that contain v
- \blacksquare F(e) =faces that contain e
- outV(f) = # vertices of f on f_{out}
- outE(f) = # edges of f on f_{out}
- $ightharpoonup \operatorname{sepF}(v) = \# \operatorname{separation} \operatorname{faces} \operatorname{that}$



Algorithm CanonicalOrder

```
initialize;
```

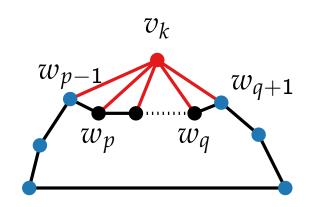
for k = n to 3 do

choose $v_k \neq v_1$, v_2 such that

- $-\operatorname{sepf}(v)=0$ or
- or $F(v) = \{f\}$, outV(f)=3 and outE(f)=2 replace v_k with path $P = w_p \dots w_q$ in f_{out} ; forall $p-1 \le i \le q$ do

remove face $\{v_k, w_i, w_{i+1}\}$ from $F(w_i)$ and $F(w_{i+1})$;

- $\mathbf{F}(v) = \text{faces that contain } v$
- \blacksquare F(e) =faces that contain e
- outV(f) = # vertices of f on f_{out}
- outE(f) = # edges of f on f_{out}
- $ightharpoonup \operatorname{sepF}(v) = \# \operatorname{separation} \operatorname{faces} \operatorname{that} \operatorname{contain} v$



Algorithm CanonicalOrder

```
initialize;
```

```
for k = n to 3 do
```

```
choose v_k \neq v_1, v_2 such that
```

- $-\operatorname{sepf}(v)=0$ or
- or $F(v) = \{f\}$, outV(f)=3 and outE(f)=2

replace v_k with path $P = w_p \dots w_q$ in f_{out} ;

```
forall p-1 \le i \le q do
```

remove face $\{v_k, w_i, w_{i+1}\}$ from $F(w_i)$ and $F(w_{i+1})$;

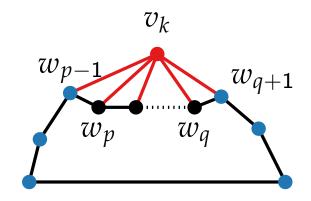
forall $w \in w_{p-1}Pw_{q+1}$ do

forall
$$f \in F(w)$$
 do update outV (f) ;

forall
$$e \in w_{p-1}Pw_{q+1}$$
 do

```
forall f \in F(e) do 
 \sqsubseteq update out\mathsf{E}(f);
```

- $\mathbf{F}(v) = \text{faces that contain } v$
- \blacksquare F(e) =faces that contain e
- outV(f) = # vertices of f on f_{out}
- out $\mathsf{E}(f) = \#$ edges of f on f_{out}
- $ightharpoonup \operatorname{sepF}(v) = \# \operatorname{separation} \operatorname{faces} \operatorname{that} \operatorname{contain} v$



Algorithm CanonicalOrder

```
initialize;
```

```
for k = n to 3 do
```

```
choose v_k \neq v_1, v_2 such that
```

- $-\operatorname{sepf}(v)=0$ or
- or $F(v) = \{f\}$, outV(f)=3 and outE(f)=2

replace v_k with path $P = w_p \dots w_q$ in f_{out} ;

```
forall p-1 \leq i \leq q do
```

remove face $\{v_k, w_i, w_{i+1}\}$ from $F(w_i)$ and $F(w_{i+1})$;

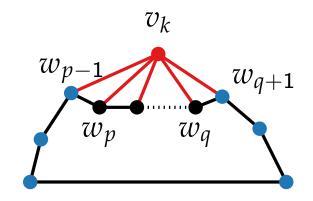
forall $w \in w_{p-1}Pw_{q+1}$ do

forall
$$f \in F(w)$$
 do
 \sqsubseteq update outV(f);

forall
$$e \in w_{p-1}Pw_{q+1}$$
 do
| forall $f \in F(e)$ do
| update outE(f);

forall
$$w \in P \cup N(P)$$
 do
forall $f \in F(w)$ do
update sepF(w);

- $\mathbf{F}(v) = \text{faces that contain } v$
- \blacksquare F(e) =faces that contain e
- outV(f) = # vertices of f on f_{out}
- out $\mathsf{E}(f) = \#$ edges of f on f_{out}
- $ightharpoonup \operatorname{sepF}(v) = \# \operatorname{separation} \operatorname{faces} \operatorname{that} \operatorname{contain} v$



Algorithm CanonicalOrder

```
initialize;
```

```
for k = n to 3 do
```

```
choose v_k \neq v_1, v_2 such that
```

- $-\operatorname{sepf}(v)=0$ or
- or $F(v) = \{f\}$, outV(f)=3 and outE(f)=2

replace v_k with path $P = w_p \dots w_q$ in f_{out} ;

```
forall p-1 \leq i \leq q do
```

remove face $\{v_k, w_i, w_{i+1}\}$ from $F(w_i)$ and $F(w_{i+1})$;

forall $w \in w_{p-1}Pw_{q+1}$ do

forall
$$f \in F(w)$$
 do update outV (f) ;

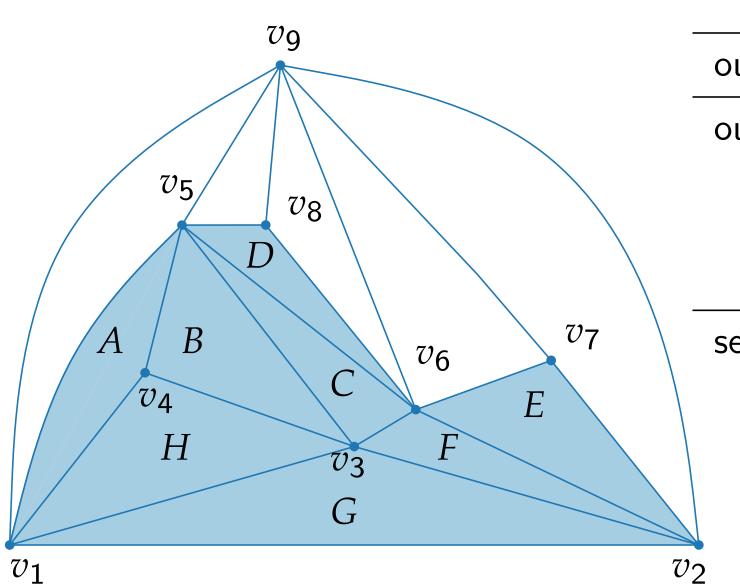
forall
$$e \in w_{p-1}Pw_{q+1}$$
 do
| forall $f \in F(e)$ do
| update out $E(f)$;

forall
$$w \in P \cup N(P)$$
 do
| forall $f \in F(w)$ do
| update sepF(w);

- $\mathbf{F}(v) = \text{faces that contain } v$
- \blacksquare F(e) =faces that contain e
- outV(f) = # vertices of f on f_{out}
- out $\mathsf{E}(f) = \#$ edges of f on f_{out}
- $ightharpoonup \operatorname{sepF}(v) = \# \operatorname{separation} \operatorname{faces} \operatorname{that} \operatorname{contain} v$

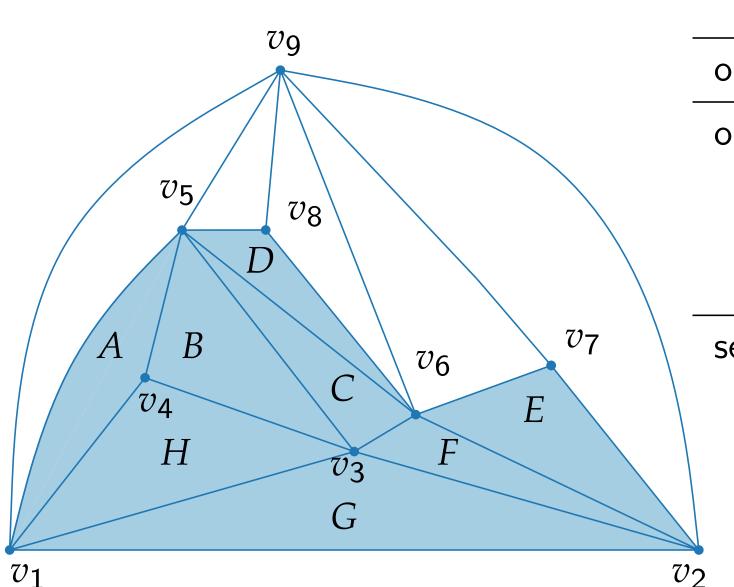
Lemma

Algorithm CanonicalOrder computes a canonical order of a plane graph in $\mathcal{O}(n)$ time.



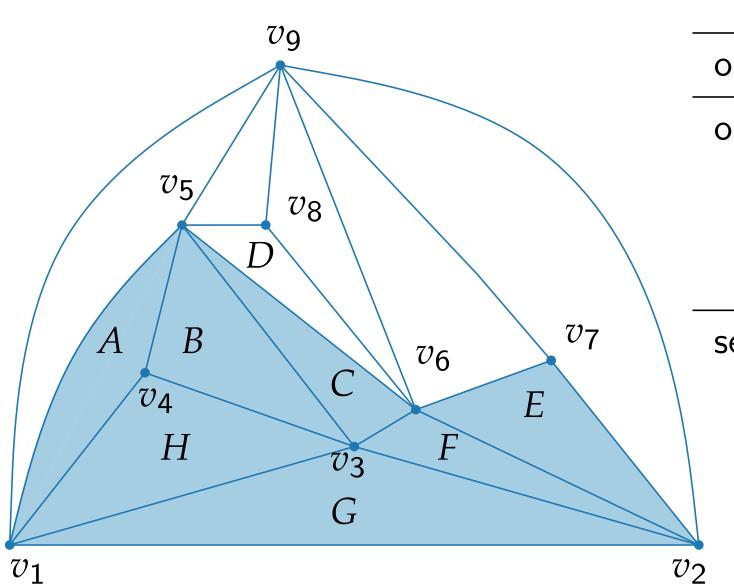
	A	B	C	D	E	F	G	$\mid H \mid$
outV(f)								
outE(f)								

	v_3	V 4	v_5	v_6	<i>v</i> 7	<i>v</i> 8]
sepF(v)							



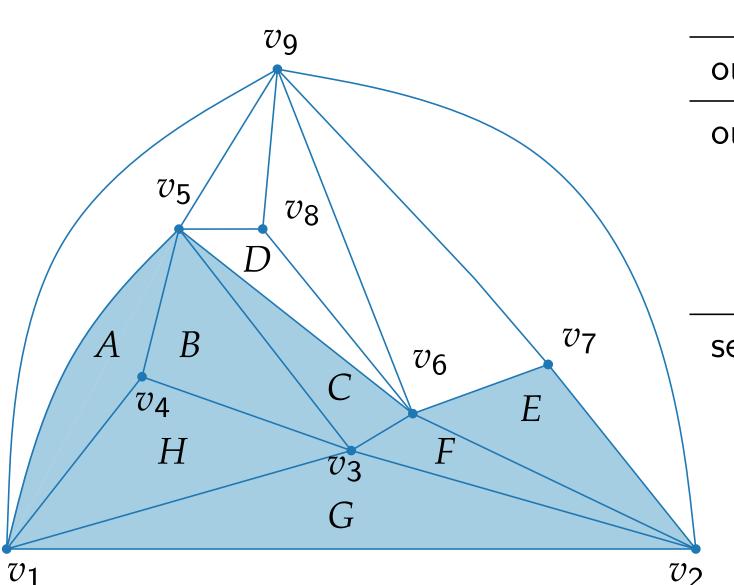
	A	В	C	D	E	F	G	$\mid H \mid$
outV(f)	2	1	2	3	3	2	2	1
outE(f)	1	0	0	2	2	0	1	0

	v_3	V 4	v_5	v_6	<i>v</i> 7	<i>v</i> 8	
sepF(v)			2	4	1	1	



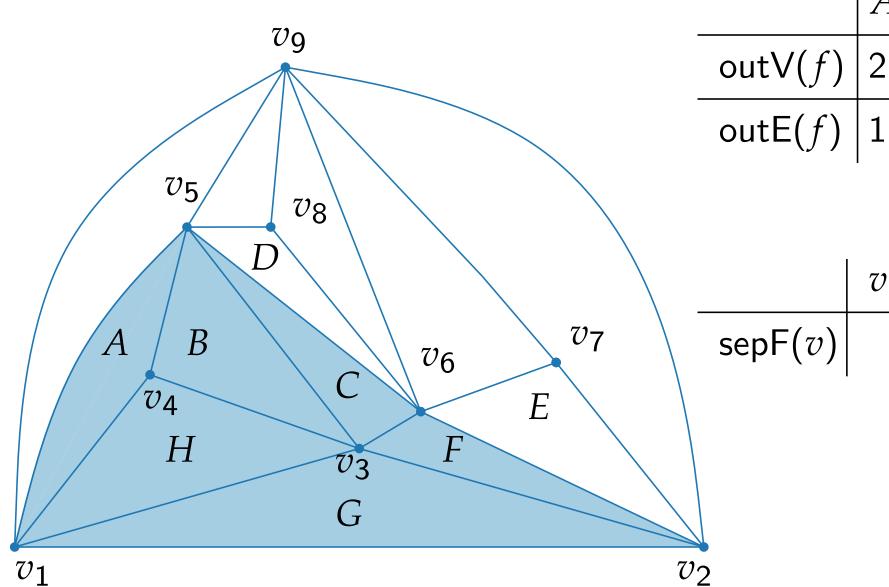
	A	В	C	D	$\mid E \mid$	F	G	H
outV(f)	2	1	2	3	3	2	2	1
outE(f)	1	0	0	2	2	0	1	0

	v_3	V 4	v_5	v_6	v 7	<i>v</i> 8	
sepF(v)			2	4	1	1	



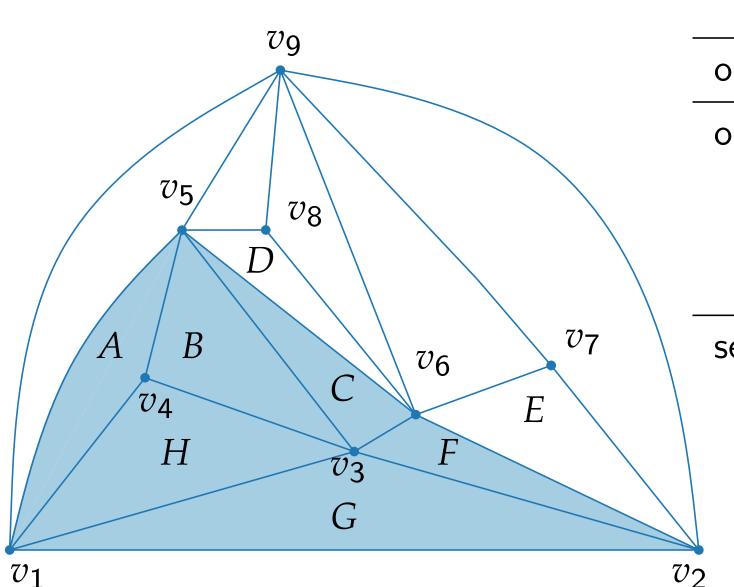
	A	В	C	D	E	F	G	Н
outV(f)	2	1	2		3	2	2	1
outE(f)	1	0	1		2	0	1	0

	v_3	V 4	v_5	v_6	<i>v</i> 7	<i>v</i> 8	
sepF(v)			0	2	1		



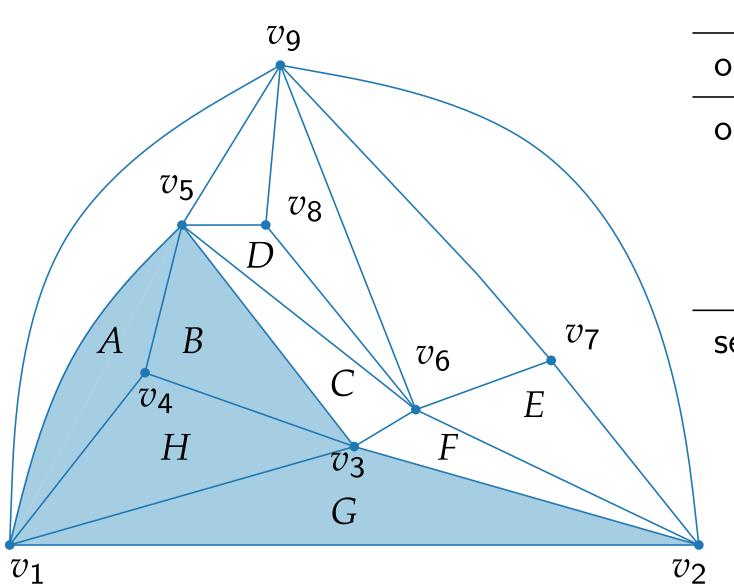
	A	В	C	D	E	F	G	H
outV(f)	2	1	2		3	2	2	1
$\overline{outE(f)}$	1	0	1		2	0	1	0

	v_3	V 4	v_5	v_6	<i>v</i> 7	<i>v</i> 8	
sepF(v)			0	2	1		



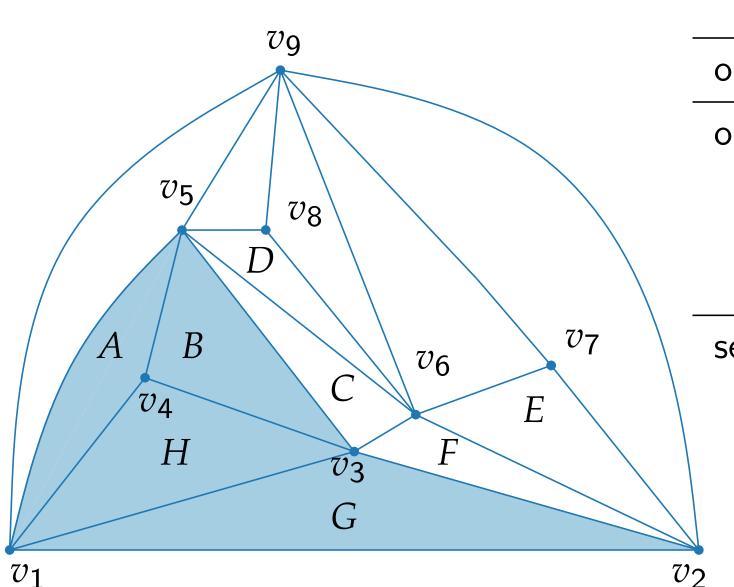
	A	B	C	D	$\mid E \mid$	F	G	$\mid H \mid$
outV(f)	2	1	2			2	2	1
outE(f)	1	0	1			1	1	0

	v_3	V 4	v_5	v_6	<i>v</i> 7	<i>v</i> 8	
sepF(v)			0	0			



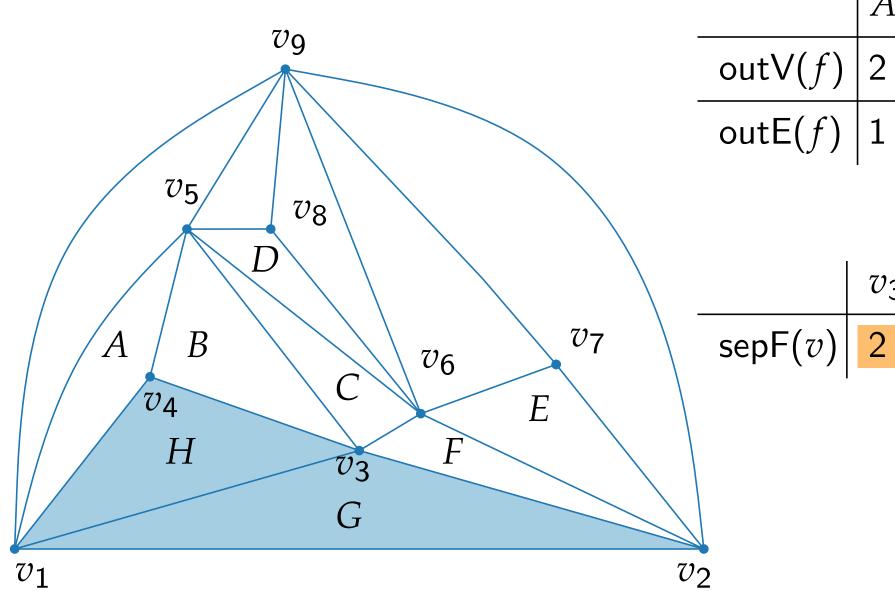
	A	B	C	D	F	G	H
outV(f)	2	1	2		2	2	1
outE(f)	1	0	1		1	1	0

	v_3	V 4	v_5	v_6	<i>v</i> 7	<i>v</i> 8	
sepF(v)			0	0			



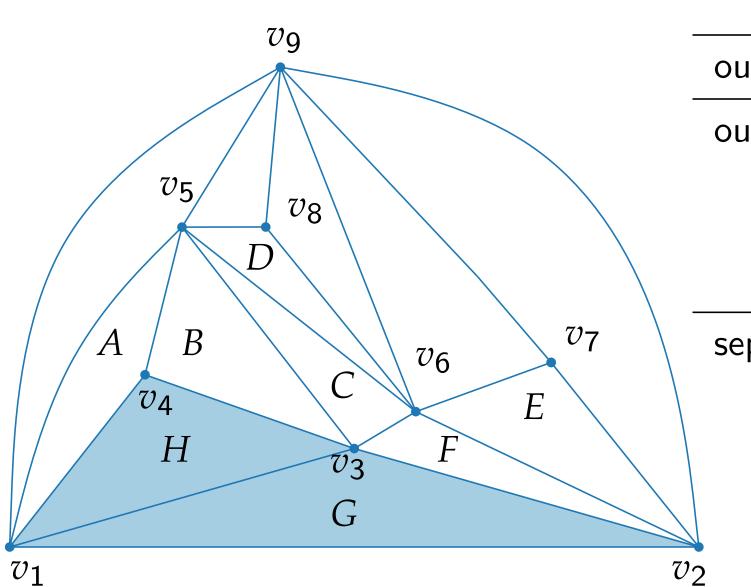
	A	B	C	D	$\mid E \mid$	F	G	$\mid H \mid$
outV(f)	2	2					3	2
outE(f)	1	1					2	0

	v ₃	V 4	v_5	v_6	<i>v</i> 7	<i>v</i> 8	
sepF(v)	2		0				



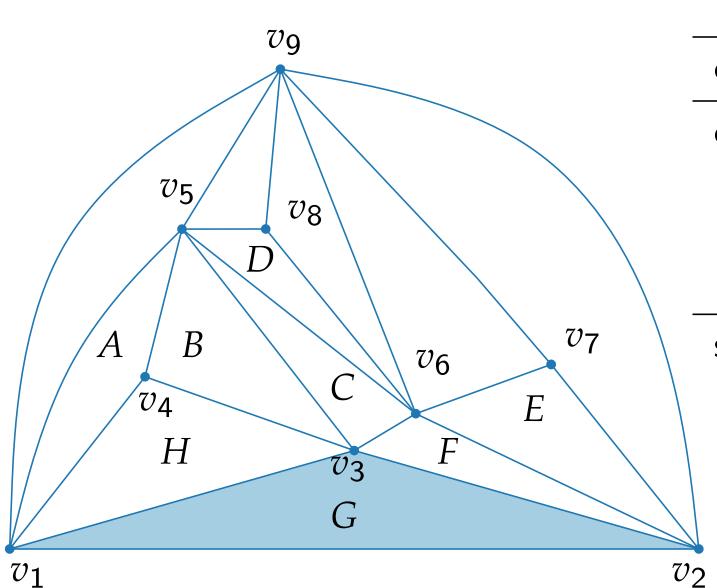
	A	B	C	D	$\mid E \mid$	F	G	$\mid H \mid$
outV(f)	2	2					3	2
$\overline{outE(f)}$	1	1					2	0

	<i>v</i> ₃	V 4	v_5	v_6	<i>v</i> 7	<i>v</i> 8	
sepF(v)	2		0				



	A	B	C	D	E	F	G	H
outV(f)							3	3
outE(f)							2	2

	v_3	V 4	v_5	v_6	V 7	<i>v</i> 8	
sepF(v)	2	1					



	A	В	C	D	E	F	G	H
outV(f)							3	3
outE(f)							2	2

Order:

 $\{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9\}$

Literature

- [HGD Ch. 6.5] canonical order
- [dFPP90] de Fraysseix, Pach, Pollack "How to draw a planar graph on a grid", Combinatorica, 1990
- [Kant96] Kant "Drawing planar graphs using the canonical ordering", Algorithmica, 1996
- [BBC11] Badent, Brandes, Cornelsen "More Canonical Ordering", JGAA, 2011