
1

Visualisation of graphs

Shift Method
Planar straight-line drawings

+2+1

Antonios Symvonis · Chrysanthi Raftopoulou
Fall semester 2022

The original slides of this presentation were created by researchers at Karlsruhe Institute of Technology (KIT), TU Wien, U Wuerzburg, U Konstanz, ...
The original presentation was modified/updated by A. Symvonis and C. Raftopoulou

2 - 1

Planar straight-line drawings

Theorem. [De Fraysseix, Pach, Pollack ’90]
Every n-vertex planar graph has a planar straight-line
drawing of size (2n− 4)× (n− 2).

Theorem. [Schnyder ’90] Every n-vertex planar graph has a
planar straight-line drawing of size (n− 2)× (n− 2).

2 - 2

Planar straight-line drawings

Theorem. [De Fraysseix, Pach, Pollack ’90]
Every n-vertex planar graph has a planar straight-line
drawing of size (2n− 4)× (n− 2).

Theorem. [Schnyder ’90] Every n-vertex planar graph has a
planar straight-line drawing of size (n− 2)× (n− 2).

Idea: Use the canonical order.
■ Start with single edge (v1, v2). Let this be G2.
■ To obtain Gi+1, add vi+1 to Gi so that

neighbours of vi+1 are on the outer face of Gi.
■ Neighbours of vi+1 in Gi have to form path of

length at least two.

vk

v1 v2

3 - 1

Canonical order – definition

Definition.
Let G = (V, E) be a triangulated plane graph on n ≥ 3 vertices.
An order π = (v1, v2, . . . , vn) is called a canonical order, if the
following conditions hold for each k, 3 ≤ k ≤ n:

■ (C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

■ (C2) Edge (v1, v2) belongs to the outer face of Gk.

■ (C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the boundary of Gk
consecutively.

3 - 2

Canonical order – definition

Definition.
Let G = (V, E) be a triangulated plane graph on n ≥ 3 vertices.
An order π = (v1, v2, . . . , vn) is called a canonical order, if the
following conditions hold for each k, 3 ≤ k ≤ n:

■ (C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

■ (C2) Edge (v1, v2) belongs to the outer face of Gk.

■ (C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the boundary of Gk
consecutively.

3 - 3

Canonical order – definition

Definition.
Let G = (V, E) be a triangulated plane graph on n ≥ 3 vertices.
An order π = (v1, v2, . . . , vn) is called a canonical order, if the
following conditions hold for each k, 3 ≤ k ≤ n:

■ (C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

■ (C2) Edge (v1, v2) belongs to the outer face of Gk.

■ (C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the boundary of Gk
consecutively.

3 - 4

Canonical order – definition

Definition.
Let G = (V, E) be a triangulated plane graph on n ≥ 3 vertices.
An order π = (v1, v2, . . . , vn) is called a canonical order, if the
following conditions hold for each k, 3 ≤ k ≤ n:

■ (C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

■ (C2) Edge (v1, v2) belongs to the outer face of Gk.

■ (C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the boundary of Gk
consecutively.

3 - 5

Canonical order – definition

Definition.
Let G = (V, E) be a triangulated plane graph on n ≥ 3 vertices.
An order π = (v1, v2, . . . , vn) is called a canonical order, if the
following conditions hold for each k, 3 ≤ k ≤ n:

■ (C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

■ (C2) Edge (v1, v2) belongs to the outer face of Gk.

■ (C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the boundary of Gk
consecutively.

Lemma.
Every triangulated plane graph has a canonical order.

4 - 1

Constraints

v1 v2v3

v4 v5

v6

4 - 2

Constraints

v1 v2

v1 v2v3

v4 v5

v6

4 - 3

Constraints

v1 v2

v3

v1 v2v3

v4 v5

v6

4 - 4

Constraints

v1 v2

v3
v4

v1 v2v3

v4 v5

v6

4 - 5

Constraints

v1 v2

v3
v4 v5

v1 v2v3

v4 v5

v6

4 - 6

Constraints

v1 v2

v3
v4 v5

v6

v1 v2v3

v4 v5

v6

4 - 7

Constraints

v1 v2

v3
v4 v5

v1 v2v3

v4 v5

v6

v6
visibility issue!

4 - 8

Constraints

Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ neighbors of vk on Gk−1 should be drawn

x-monotone,
■ vk is placed above its neighbors on Gk−1.

v1 v2

v3
v4 v5

v6

v1 v2v3

v4 v5

v6

vk

v1 v2

4 - 9

Constraints

Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ neighbors of vk on Gk−1 should be drawn

x-monotone,
■ vk is placed above its neighbors on Gk−1.

v1 v2

v3
v4 v5

v6

v1 v2v3

v4 v5

v6

vk

v1 v2

4 - 10

Constraints

Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ neighbors of vk on Gk−1 should be drawn

x-monotone,
■ vk is placed above its neighbors on Gk−1.

v1 v2

v3
v4 v5

v6

v1 v2v3

v4 v5

v6

vk

v1 v2

5 - 1

Constraints

Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ vk is placed above its neighbors on Gk−1.v1 v2v3

v4 v5

v6

5 - 2

Constraints

Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ vk is placed above its neighbors on Gk−1.

v1 v2

v1 v2v3

v4 v5

v6

G2: v1 : (0, 0), v2 : (1, 0)

5 - 3

Constraints

Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ vk is placed above its neighbors on Gk−1.

v1 v2

v1 v2v3

v4 v5

v6

G2: v1 : (0, 0), v2 : (1, 0)

v3
■ Need to make room for v3

5 - 4

Constraints

Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ vk is placed above its neighbors on Gk−1.

v1 v2

v1 v2v3

v4 v5

v6

G2: v1 : (0, 0), v2 : (1, 0)

v3
■ Need to make room for v3
■ Shift v2 to the right

5 - 5

Constraints

Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ vk is placed above its neighbors on Gk−1.v1 v2v3

v4 v5

v6

G2: v1 : (0, 0), v2 : (1, 0)

v1 v2

G3: v1 : (0, 0), v2 : (2, 0), v3 : (1, 1)

v3

5 - 6

Constraints

Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ vk is placed above its neighbors on Gk−1.v1 v2v3

v4 v5

v6

G2: v1 : (0, 0), v2 : (1, 0)

v1 v2

G3: v1 : (0, 0), v2 : (2, 0), v3 : (1, 1)

v3

v4

5 - 7

Constraints

Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ vk is placed above its neighbors on Gk−1.v1 v2v3

v4 v5

v6

G2: v1 : (0, 0), v2 : (1, 0)

v1 v2

G3: v1 : (0, 0), v2 : (2, 0), v3 : (1, 1)

v3

v4

5 - 8

Constraints

Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ vk is placed above its neighbors on Gk−1.v1 v2v3

v4 v5

v6

G2: v1 : (0, 0), v2 : (1, 0)

G3: v1 : (0, 0), v2 : (2, 0), v3 : (1, 1)

v1 v2

G4: v1 : (0, 0), v2 : (3, 0), v3 : (2, 1), v4 : (1, 2)

v3

v4

5 - 9

Constraints

Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ vk is placed above its neighbors on Gk−1.v1 v2v3

v4 v5

v6

G2: v1 : (0, 0), v2 : (1, 0)

G3: v1 : (0, 0), v2 : (2, 0), v3 : (1, 1)v5

v1 v2

G4: v1 : (0, 0), v2 : (3, 0), v3 : (2, 1), v4 : (1, 2)

v3

v4

5 - 10

Constraints

Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ vk is placed above its neighbors on Gk−1.v1 v2v3

v4 v5

v6

G2: v1 : (0, 0), v2 : (1, 0)

G3: v1 : (0, 0), v2 : (2, 0), v3 : (1, 1)v5

v1 v2

G4: v1 : (0, 0), v2 : (3, 0), v3 : (2, 1), v4 : (1, 2)

v3

v4

5 - 11

Constraints

Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ vk is placed above its neighbors on Gk−1.v1 v2v3

v4 v5

v6

G2: v1 : (0, 0), v2 : (1, 0)

G3: v1 : (0, 0), v2 : (2, 0), v3 : (1, 1)

G4: v1 : (0, 0), v2 : (3, 0), v3 : (2, 1), v4 : (1, 2)

G5: v1 : (0, 0), v2 : (4, 0), v3 : (2, 1), v4 : (1, 2), v5 : (3, 2)

v1 v2

v4 v5

v3

5 - 12

Constraints

Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ vk is placed above its neighbors on Gk−1.

G2: v1 : (0, 0), v2 : (1, 0)

G3: v1 : (0, 0), v2 : (2, 0), v3 : (1, 1)

G4: v1 : (0, 0), v2 : (3, 0), v3 : (2, 1), v4 : (1, 2)

G5: v1 : (0, 0), v2 : (4, 0), v3 : (2, 1), v4 : (1, 2), v5 : (3, 2)

v1 v2

v4 v5

v3

5 - 13

Constraints

Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ vk is placed above its neighbors on Gk−1.

G2: v1 : (0, 0), v2 : (1, 0)

G3: v1 : (0, 0), v2 : (2, 0), v3 : (1, 1)

G4: v1 : (0, 0), v2 : (3, 0), v3 : (2, 1), v4 : (1, 2)

G5: v1 : (0, 0), v2 : (4, 0), v3 : (2, 1), v4 : (1, 2), v5 : (3, 2)

v1 v2

v4 v5

v3

v6

G: v6 : (2, 5)

6 - 1

Height

v1 v2

v4 v5

v3

v6

6 - 2

Height

v1 v2

v4 v5

v3

v6

Placement of v6 depends on
■ the slope of (v1, v4), (v2, v5)
■ and the length of (v1, v2)

(which is at most n− 2)

6 - 3

Height

v1 v2

v4 v5

v3

v6

Placement of v6 depends on
■ the slope of (v1, v4), (v2, v5)
■ and the length of (v1, v2)

(which is at most n− 2)

Can the height exceed O(n)?

7 - 1

Height

v1 v2

vn

7 - 2

Height

■ v3 at height 1
■ v4, v5 at height 2
■ v6, v7 at height 3
■ v2i, v2i+1 at height i
■ vn−2, vn−1 at height n−2

2v1 v2

vn

7 - 3

Height

■ v3 at height 1
■ v4, v5 at height 2
■ v6, v7 at height 3
■ v2i, v2i+1 at height i
■ vn−2, vn−1 at height n−2

2v1 v2

vn

7 - 4

Height

■ v3 at height 1
■ v4, v5 at height 2
■ v6, v7 at height 3
■ v2i, v2i+1 at height i
■ vn−2, vn−1 at height n−2

2v1 v2

vn

7 - 5

Height

■ v3 at height 1
■ v4, v5 at height 2
■ v6, v7 at height 3
■ v2i, v2i+1 at height i
■ vn−2, vn−1 at height n−2

2v1 v2

vn

7 - 6

Height

■ v3 at height 1
■ v4, v5 at height 2
■ v6, v7 at height 3
■ v2i, v2i+1 at height i
■ vn−2, vn−1 at height n−2

2v1 v2

vn

vn−2 vn−1

7 - 7

Height

■ v3 at height 1
■ v4, v5 at height 2
■ v6, v7 at height 3
■ v2i, v2i+1 at height i
■ vn−2, vn−1 at height n−2

2

■ Slope for (v1, vn−2) =
n−2
2

■ Slope for (v2, vn−1) = − n−2
2

■ Length of (v1, v2) = n− 2

v1 v2

vn

7 - 8

Height

■ v3 at height 1
■ v4, v5 at height 2
■ v6, v7 at height 3
■ v2i, v2i+1 at height i
■ vn−2, vn−1 at height n−2

2

■ Slope for (v1, vn−2) =
n−2
2

■ Slope for (v2, vn−1) = − n−2
2

■ Length of (v1, v2) = n− 2

v1 v2

vn vn above
(n−2)2

4

7 - 9

Height

v1 v2

vn

Stretching?
■ decrease the height
■ increase the width
■ vertices on the grid?

v1 v2

vn

7 - 10

Height

v1 v2

vn

Stretching?
■ decrease the height
■ increase the width
■ vertices on the grid?

Shifting
■ control slopes
■ additional shifting at each step

8 - 1

Constraints
Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn with slope ±1,

v1 v2v3

v4 v5

v6

8 - 2

Constraints
Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn with slope ±1,

v1 v2
v1 v2v3

v4 v5

v6

8 - 3

Constraints
Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn with slope ±1,

v1 v2
v1 v2v3

v4 v5

v6

v3

8 - 4

Constraints
Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn with slope ±1,

v1 v2
v1 v2v3

v4 v5

v6

v3

8 - 5

Constraints
Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn with slope ±1,

v1 v2v3

v4 v5

v6

v1 v2

v3

8 - 6

Constraints
Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn with slope ±1,

v1 v2v3

v4 v5

v6

v1 v2

v3

v4

8 - 7

Constraints
Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn with slope ±1,

v1 v2v3

v4 v5

v6

v1 v2

v3

v4

8 - 8

Constraints
Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn with slope ±1,

v1 v2v3

v4 v5

v6

v1 v2

v3

v4

8 - 9

Constraints
Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn with slope ±1,

v1 v2v3

v4 v5

v6

v1 v2

v3

v4

8 - 10

Constraints
Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn with slope ±1,

v1 v2v3

v4 v5

v6v5

v1 v2

v3

v4

8 - 11

Constraints
Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn with slope ±1,

v1 v2v3

v4 v5

v6v5

v1 v2

v3

v4

8 - 12

Constraints
Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn with slope ±1,

v1 v2v3

v4 v5

v6

v1 v2

v4 v5

v3

8 - 13

Constraints
Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn with slope ±1,

v1 v2v3

v4 v5

v6

v1 v2

v4 v5

v3

8 - 14

Constraints
Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn with slope ±1,

v1 v2v3

v4 v5

v6

v6

v1 v2

v4 v5

v3

8 - 15

Constraints
Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn with slope ±1,

v1 v2v3

v4 v5

v6

v1 v2

v4 v5

v3

v6

8 - 16

Constraints
Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn with slope ±1,

v1 v2v3

v4 v5

v6

v1 v2

v4 v5

v3

v6

Remarks:
■ 2 shifts per step
■ width < 2n
■ height < n

9 - 1

Shift method

Algorithm invariants/constraints:
Gk−1 is drawn such that
■ v1 is on (0, 0), v2 is on (2k− 4, 0),
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ each edge of the boundary of Gk−1 (minus

edge (v1, v2)) is drawn with slopes ±1.

v1 v2

Gk−1

9 - 2

Shift method

Algorithm invariants/constraints:
Gk−1 is drawn such that
■ v1 is on (0, 0), v2 is on (2k− 4, 0),
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ each edge of the boundary of Gk−1 (minus

edge (v1, v2)) is drawn with slopes ±1.

v1 v2

Gk−1

vk

wp wq

9 - 3

Shift method

Algorithm invariants/constraints:
Gk−1 is drawn such that
■ v1 is on (0, 0), v2 is on (2k− 4, 0),
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ each edge of the boundary of Gk−1 (minus

edge (v1, v2)) is drawn with slopes ±1.

v1 v2

Gk−1

vk

wp wq

9 - 4

Shift method

Algorithm invariants/constraints:
Gk−1 is drawn such that
■ v1 is on (0, 0), v2 is on (2k− 4, 0),
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ each edge of the boundary of Gk−1 (minus

edge (v1, v2)) is drawn with slopes ±1.

v1 v2

Overlaps!

Gk−1

vk

wp wq

9 - 5

Shift method

Algorithm invariants/constraints:
Gk−1 is drawn such that
■ v1 is on (0, 0), v2 is on (2k− 4, 0),
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ each edge of the boundary of Gk−1 (minus

edge (v1, v2)) is drawn with slopes ±1.

v1 v2

Overlaps!

What is the solution?

Gk−1

vk

wp wq

9 - 6

Shift method

Algorithm invariants/constraints:
Gk−1 is drawn such that
■ v1 is on (0, 0), v2 is on (2k− 4, 0),
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ each edge of the boundary of Gk−1 (minus

edge (v1, v2)) is drawn with slopes ±1.

v1 v2

What is the solution?

Gk−1

vk

wp wq

9 - 7

Shift method

Algorithm invariants/constraints:
Gk−1 is drawn such that
■ v1 is on (0, 0), v2 is on (2k− 4, 0),
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ each edge of the boundary of Gk−1 (minus

edge (v1, v2)) is drawn with slopes ±1.

v1 v2

What is the solution?

Gk−1

vk

wp wq

9 - 8

Shift method

Algorithm invariants/constraints:
Gk−1 is drawn such that
■ v1 is on (0, 0), v2 is on (2k− 4, 0),
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ each edge of the boundary of Gk−1 (minus

edge (v1, v2)) is drawn with slopes ±1.

v1 v2

What is the solution?

Gk−1

vk

wp wq

9 - 9

Shift method

Algorithm invariants/constraints:
Gk−1 is drawn such that
■ v1 is on (0, 0), v2 is on (2k− 4, 0),
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ each edge of the boundary of Gk−1 (minus

edge (v1, v2)) is drawn with slopes ±1.

v1 v2

Gk−1

vk

9 - 10

Shift method

x

y

Algorithm invariants/constraints:
Gk−1 is drawn such that
■ v1 is on (0, 0), v2 is on (2k− 4, 0),
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ each edge of the boundary of Gk−1 (minus

edge (v1, v2)) is drawn with slopes ±1.

v1 v2

Gk−1

vk
■ Why is vk on grid?

9 - 11

Shift method

x

y

Algorithm invariants/constraints:
Gk−1 is drawn such that
■ v1 is on (0, 0), v2 is on (2k− 4, 0),
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ each edge of the boundary of Gk−1 (minus

edge (v1, v2)) is drawn with slopes ±1.

v1 v2

Gk−1

L(vk)

vk
■ Why is vk on grid?

10 - 1

Shift method

Lemma.
Every two vertices on the outerface of Gk−1 have even Manhattan distance.

10 - 2

Shift method

Lemma.
Every two vertices on the outerface of Gk−1 have even Manhattan distance.

■ ui and ui+1 consecutive on the outerface of Gk−1

10 - 3

Shift method

Lemma.
Every two vertices on the outerface of Gk−1 have even Manhattan distance.

dxi

dyi

ui

ui+1

■ ui and ui+1 consecutive on the outerface of Gk−1

dxi

dyi

ui+1

ui

10 - 4

Shift method

Lemma.
Every two vertices on the outerface of Gk−1 have even Manhattan distance.

dxi

dyi

ui

ui+1

■ ui and ui+1 consecutive on the outerface of Gk−1

dxi

dyi

ui+1

ui

d(ui, ui+1) = |dxi|+ |dyi| even

|dxi| ± |dyi| even

10 - 5

Shift method

Lemma.
Every two vertices on the outerface of Gk−1 have even Manhattan distance.

dxi

dyi

ui

ui+1

■ ui and ui+1 consecutive on the outerface of Gk−1

dxi

dyi

ui+1

ui

d(ui, ui+1) = |dxi|+ |dyi| even

■ ui, ui+ℓ on the outerface of Gk−1

|dxi| ± |dyi| even

10 - 6

Shift method

Lemma.
Every two vertices on the outerface of Gk−1 have even Manhattan distance.

dxi

dyi

ui

ui+1

■ ui and ui+1 consecutive on the outerface of Gk−1

dxi

dyi

ui+1

ui

d(ui, ui+1) = |dxi|+ |dyi| even

■ ui, ui+ℓ on the outerface of Gk−1

d(ui, uℓ) =
ℓ−1
∑
j=i
|dxj|+ λj|dyj|,λj = ±1

|dxi| ± |dyi| even

even

10 - 7

Shift method

Lemma.
Every two vertices on the outerface of Gk−1 have even Manhattan distance.

dxi

dyi

ui

ui+1

■ ui and ui+1 consecutive on the outerface of Gk−1

dxi

dyi

ui+1

ui

d(ui, ui+1) = |dxi|+ |dyi| even

■ ui, ui+ℓ on the outerface of Gk−1

d(ui, uℓ) =
ℓ−1
∑
j=i
|dxj|+ λj|dyj|,λj = ±1

|dxi| ± |dyi| even

even

∆x

∆y

∆x+∆y
2

11 - 1

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

3
4

5

11 - 2

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

3
4

5

11 - 3

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

+2
+1

3
4

5

11 - 4

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

3
4

5

11 - 5

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

3
4

5

11 - 6

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

+2
+1

3
4

5

11 - 7

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

3
4

5

11 - 8

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

3
4

5

11 - 9

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

+2
+1

3
4

5

11 - 10

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

3
4

5

11 - 11

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

3
4

5

11 - 12

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

+1

3
4

5

+2

11 - 13

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

3
4

5

11 - 14

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

3
4

5

11 - 15

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

+2
+1

3
4

5

11 - 16

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

3
4

5

11 - 17

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

3
4

5

11 - 18

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

+2
+1

3
4

5

11 - 19

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

3
4

5

11 - 20

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

3
4

5

11 - 21

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

+2
+1

3
4

5

11 - 22

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

3
4

5

11 - 23

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

3
4

5

11 - 24

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

+2
+1

3
4

5

11 - 25

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

3
4

5

11 - 26

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

3
4

5

11 - 27

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

+2
+1

3
4

5

11 - 28

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

3
4

5

11 - 29

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

3
4

5

11 - 30

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

+2
+1

3
4

5

11 - 31

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

3
4

5

11 - 32

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

3
4

5

11 - 33

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

+2+1

3
4

5

11 - 34

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

3
4

5

11 - 35

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

3
4

5

11 - 36

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

+2+1

3
4

5

11 - 37

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

3
4

5

11 - 38

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

3
4

5

11 - 39

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

+2

3
4

5

+1

11 - 40

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

3
4

5

11 - 41

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

3
4

5

11 - 42

Shift method – example

7
8

6

(0, 0) (2n− 4, 0)

(n− 2, n− 2)

12

13

14

15

16

+1 +2

2

11

10

9

1

3
4

5

12 - 1

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

+2
+1

3
4

5

12 - 2

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

3
4

5

+2
+1

12 - 3

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

3
4

5

+2
+1

Which internal nodes are shifted?

12 - 4

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

3
4

5

+2
+1

Which internal nodes are shifted?

■ An internal node shifts with
its covering outer vertex

■ Define covering

13 - 1

Shift method – dominating

w1 wt

vk

Gk−1
w2

wp wq

wt−1

13 - 2

Shift method – dominating

w1 wt

vk

Gk−1

covered vertices
w2

wp wq

wt−1

13 - 3

Shift method – dominating

w1 wt

vk

Gk−1

covered vertices

Observations.
■ Each internal vertex is covered exactly once.
■ Covering relation defines a tree in G
■ and a forest in Gi, 1 ≤ i ≤ n− 1.

w2

wp wq

wt−1

13 - 4

Shift method – dominating

w1 wt

vk

Gk−1

Observations.
■ Each internal vertex is covered exactly once.
■ Covering relation defines a tree in G
■ and a forest in Gi, 1 ≤ i ≤ n− 1.

w2

wp wq

wt−1

13 - 5

Shift method – dominating

w1 wt

vk

Gk−1

Observations.
■ Each internal vertex is covered exactly once.
■ Covering relation defines a tree in G
■ and a forest in Gi, 1 ≤ i ≤ n− 1.

w2

wp wq

wt−1

13 - 6

Shift method – dominating

w1 wt

vk

Gk−1

Observations.
■ Each internal vertex is covered exactly once.
■ Covering relation defines a tree in G
■ and a forest in Gi, 1 ≤ i ≤ n− 1.

w2

wp wq

wt−1

L(wi)

13 - 7

Shift method – dominating

w1 wt

vk

Gk−1

Observations.
■ Each internal vertex is covered exactly once.
■ Covering relation defines a tree in G
■ and a forest in Gi, 1 ≤ i ≤ n− 1.

w2

wp wq

wt−1

L(wi)

Definition.
L(wi) is the set of vertices covered by wi
L(wi) is the subtree of the covering tree rooted at wi

14 - 1

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

+2
+1

3
4

5

14 - 2

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

3
4

5

14 - 3

Shift method – example

7
8

6

L(10)

12

13

14

15

16

+1 +2

2

11

10

9

1

3
4

5

14 - 4

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

+2
+1

3
4

5

14 - 5

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

3
4

5

14 - 6

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

3
4

5

L(11)

14 - 7

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

+2
+1

3
4

5

14 - 8

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

3
4

5

14 - 9

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

3
4

5

14 - 10

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

+2
+1

3
4

5

14 - 11

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

3
4

5

14 - 12

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

3
4

5

L(13)

14 - 13

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

+2+1

3
4

5

14 - 14

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

3
4

5

14 - 15

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

3
4

5

L(14)

14 - 16

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

+2+1

3
4

5

14 - 17

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

3
4

5

14 - 18

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

3
4

5

L(15)

14 - 19

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

+2

3
4

5

+1

14 - 20

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

3
4

5

14 - 21

Shift method – example

7
8

6

12

13

14

15

16

+1 +2

2

11

10

9

1

3
4

5

L(16)

14 - 22

Shift method – example

7
8

6

(0, 0) (2n− 4, 0)

(n− 2, n− 2)

12

13

14

15

16

+1 +2

2

11

10

9

1

3
4

5

15 - 1

Shift method – planarity

w1 wt

vk

Gk−1

Observations.
■ Each internal vertex is covered exactly once.
■ Covering relation defines a tree in G
■ and a forest in Gi, 1 ≤ i ≤ n− 1.w2

wp wq

wt−1

L(wi)

15 - 2

Shift method – planarity

w1 wt

vk

Gk−1

Observations.
■ Each internal vertex is covered exactly once.
■ Covering relation defines a tree in G
■ and a forest in Gi, 1 ≤ i ≤ n− 1.w2

wp wq

wt−1

L(wi)

Lemma. Let 0 < δ1 ≤ δ2 ≤ · · · ≤ δt ∈N, such
that δq − δp ≥ 2 and even.
If we shift L(wi) by δi to the right, we get a planar
straight-line drawing.

15 - 3

Shift method – planarity

w1 wt

vk

Gk−1

Observations.
■ Each internal vertex is covered exactly once.
■ Covering relation defines a tree in G
■ and a forest in Gi, 1 ≤ i ≤ n− 1.w2

wp wq

wt−1

L(wi)

Proof by induction:
If Gk−1 straight-line planar, then also Gk.

Lemma. Let 0 < δ1 ≤ δ2 ≤ · · · ≤ δt ∈N, such
that δq − δp ≥ 2 and even.
If we shift L(wi) by δi to the right, we get a planar
straight-line drawing.

16 - 1

Shift method – pseudocode

Let v1, . . . , vn be a canonical order of G
for i = 1 to 3 do

L(vi)← {vi}
P(v1)← (0, 0); P(v2)← (2, 0), P(v3)← (1, 1)
for k = 4 to n do

Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the boundary of Gk−1
and let wp, . . . , wq be the neighbours of vk

for ∀v ∈ ∪q−1
j=p+1L(wj) do

x(v)← x(v) + 1

for ∀v ∈ ∪t
j=qL(wj) do

x(v)← x(v) + 2

P(vk)← intersection of +1/−1 edges from P(wp) and P(wq)

L(vk)← ∪
q−k
j=p+1L(wj) ∪ {vk}

16 - 2

Shift method – pseudocode

Let v1, . . . , vn be a canonical order of G
for i = 1 to 3 do

L(vi)← {vi}
P(v1)← (0, 0); P(v2)← (2, 0), P(v3)← (1, 1)
for k = 4 to n do

Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the boundary of Gk−1
and let wp, . . . , wq be the neighbours of vk

for ∀v ∈ ∪q−1
j=p+1L(wj) do

x(v)← x(v) + 1

for ∀v ∈ ∪t
j=qL(wj) do

x(v)← x(v) + 2

P(vk)← intersection of +1/−1 edges from P(wp) and P(wq)

L(vk)← ∪
q−k
j=p+1L(wj) ∪ {vk}

16 - 3

Shift method – pseudocode

Let v1, . . . , vn be a canonical order of G
for i = 1 to 3 do

L(vi)← {vi}
P(v1)← (0, 0); P(v2)← (2, 0), P(v3)← (1, 1)
for k = 4 to n do

Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the boundary of Gk−1
and let wp, . . . , wq be the neighbours of vk

for ∀v ∈ ∪q−1
j=p+1L(wj) do

x(v)← x(v) + 1

for ∀v ∈ ∪t
j=qL(wj) do

x(v)← x(v) + 2

P(vk)← intersection of +1/−1 edges from P(wp) and P(wq)

L(vk)← ∪
q−k
j=p+1L(wj) ∪ {vk}

■ Runtime O(n2)
■ Can we do better?

17 - 1

Shift method – linear time implementation

Idea:
■ Instead of storing explicit x-coordinates,

we store x differences.
■ We need a spanning tree rooted at v1

w1 wt

vk

Gk−1
w2

wp wq

wt−1

wp+1 wq−1

17 - 2

Shift method – linear time implementation

Idea:
■ Instead of storing explicit x-coordinates,

we store x differences.
■ We need a spanning tree rooted at v1

w1 wt

vk

Gk−1
w2

wp wq

wt−1
root

wp+1 wq−1

17 - 3

Shift method – linear time implementation

Idea:
■ Instead of storing explicit x-coordinates,

we store x differences.
■ We need a spanning tree rooted at v1

Outerface of Gk−1
■ at wi store ∆x(wi) = x(wi)− x(wi−1) w1 wt

Gk−1
w2

wp wq

wt−1
root

wp+1 wq−1

17 - 4

Shift method – linear time implementation

Idea:
■ Instead of storing explicit x-coordinates,

we store x differences.
■ We need a spanning tree rooted at v1

Outerface of Gk−1
■ at wi store ∆x(wi) = x(wi)− x(wi−1) w1 wt

Gk−1
w2

wp wq

wt−1
root

wp+1 wq−1

17 - 5

Shift method – linear time implementation

Idea:
■ Instead of storing explicit x-coordinates,

we store x differences.
■ We need a spanning tree rooted at v1

Outerface of Gk−1
■ at wi store ∆x(wi) = x(wi)− x(wi−1) w1 wt

vk

Gk−1
w2

wp wq

wt−1
root

Adding vk
■ Shifting is performed by increasing ∆x(wp+1) and ∆x(wq)
■ x(vk) depends on x(wp) and x(wq)
■ x(vk) as x difference from wp
■ x(wq) as x difference from vk
■ wp+1 covered by vk
→ x(wp+1) as x difference from x(vk)

wp+1 wq−1

17 - 6

Shift method – linear time implementation

Idea:
■ Instead of storing explicit x-coordinates,

we store x differences.
■ We need a spanning tree rooted at v1

Outerface of Gk−1
■ at wi store ∆x(wi) = x(wi)− x(wi−1) w1 wt

vk

Gk−1
w2

wp wq

wt−1
root

Adding vk
■ Shifting is performed by increasing ∆x(wp+1) and ∆x(wq)
■ x(vk) depends on x(wp) and x(wq)
■ x(vk) as x difference from wp
■ x(wq) as x difference from vk
■ wp+1 covered by vk
→ x(wp+1) as x difference from x(vk)

wp+1 wq−1

17 - 7

Shift method – linear time implementation

Idea:
■ Instead of storing explicit x-coordinates,

we store x differences.
■ We need a spanning tree rooted at v1

Outerface of Gk−1
■ at wi store ∆x(wi) = x(wi)− x(wi−1) w1 wt

vk

Gk−1
w2

wp wq

wt−1
root

Adding vk
■ Shifting is performed by increasing ∆x(wp+1) and ∆x(wq)
■ x(vk) depends on x(wp) and x(wq)
■ x(vk) as x difference from wp
■ x(wq) as x difference from vk
■ wp+1 covered by vk
→ x(wp+1) as x difference from x(vk)

wp+1 wq−1

17 - 8

Shift method – linear time implementation

Idea:
■ Instead of storing explicit x-coordinates,

we store x differences.
■ We need a spanning tree rooted at v1

Outerface of Gk−1
■ at wi store ∆x(wi) = x(wi)− x(wi−1) w1 wt

vk

Gk−1
w2

wp wq

wt−1
root

Adding vk
■ Shifting is performed by increasing ∆x(wp+1) and ∆x(wq)
■ x(vk) depends on x(wp) and x(wq)
■ x(vk) as x difference from wp
■ x(wq) as x difference from vk
■ wp+1 covered by vk
→ x(wp+1) as x difference from x(vk)

wp+1 wq−1

17 - 9

Shift method – linear time implementation

Idea:
■ Instead of storing explicit x-coordinates,

we store x differences.
■ We need a spanning tree rooted at v1

Outerface of Gk−1
■ at wi store ∆x(wi) = x(wi)− x(wi−1) w1 wt

vk

Gk−1
w2

wp wq

wt−1
root

Adding vk
■ Shifting is performed by increasing ∆x(wp+1) and ∆x(wq)
■ x(vk) depends on x(wp) and x(wq)
■ x(vk) as x difference from wp
■ x(wq) as x difference from vk
■ wp+1 covered by vk
→ x(wp+1) as x difference from x(vk)

wp+1 wq−1

17 - 10

Shift method – linear time implementation

Idea:
■ Instead of storing explicit x-coordinates,

we store x differences.
■ We need a spanning tree rooted at v1

Outerface of Gk−1
■ at wi store ∆x(wi) = x(wi)− x(wi−1) w1 wt

vk

Gk−1
w2

wp wq

wt−1

Adding vk
■ Shifting is performed by increasing ∆x(wp+1) and ∆x(wq)
■ x(vk) depends on x(wp) and x(wq)
■ x(vk) as x difference from wp
■ x(wq) as x difference from vk
■ wp+1 covered by vk
→ x(wp+1) as x difference from x(vk)

wp+1 wq−1

17 - 11

Shift method – linear time implementation

Idea:
■ Instead of storing explicit x-coordinates,

we store x differences.
■ We need a spanning tree rooted at v1

Outerface of Gk−1
■ at wi store ∆x(wi) = x(wi)− x(wi−1) w1 wt

vk

Gk−1
w2

wp wq

wt−1

Adding vk
■ Shifting is performed by increasing ∆x(wp+1) and ∆x(wq)
■ x(vk) depends on x(wp) and x(wq)
■ x(vk) as x difference from wp
■ x(wq) as x difference from vk
■ wp+1 covered by vk
→ x(wp+1) as x difference from x(vk)

wp+1 wq−1

w1 wt

vk

Gk−1
w2

wp wq

wt−1

wp+1 wq−1

18 - 1

Shift method – linear time implementation

■ Step 1. computex(vk) and y(vk)

w1 wt

vk

Gk−1
w2

wp wq

wt−1

wp+1 wq−1

18 - 2

Shift method – linear time implementation

■ Step 1. computex(vk) and y(vk)

(1) x(vk) =
1
2 (x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2 (x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2 (x(wq)− x(wp) + y(wq)− y(wp))

w1 wt

vk

Gk−1
w2

wp wq

wt−1

wp+1 wq−1

18 - 3

Shift method – linear time implementation

■ Step 1. computex(vk) and y(vk)

(1) x(vk) =
1
2 (x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2 (x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2 (x(wq)− x(wp) + y(wq)− y(wp))

■ Step 1 revised. compute x(vk)− x(wp) and y(vk)

w1 wt

vk

Gk−1
w2

wp wq

wt−1

wp+1 wq−1

18 - 4

Shift method – linear time implementation

■ Step 1. computex(vk) and y(vk)

(1) x(vk) =
1
2 (x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2 (x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2 (x(wq)− x(wp) + y(wq)− y(wp))

■ Step 1 revised. compute x(vk)− x(wp) and y(vk)

w1 wt

vk

Gk−1
w2

wp wq

wt−1

wp+1 wq−1

18 - 5

Shift method – linear time implementation

■ Step 1. computex(vk) and y(vk)

(1) x(vk) =
1
2 (x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2 (x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2 (x(wq)− x(wp) + y(wq)− y(wp))

■ Step 1 revised. compute x(vk)− x(wp) and y(vk)

w1 wt

vk

Gk−1
w2

wp wq

wt−1

wp+1 wq−1

We can compute
x(wq)− x(wp)

18 - 6

Shift method – linear time implementation

■ Step 1. computex(vk) and y(vk)

(1) x(vk) =
1
2 (x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2 (x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2 (x(wq)− x(wp) + y(wq)− y(wp))

■ Step 1 revised. compute x(vk)− x(wp) and y(vk)

w1 wt

vk

Gk−1
w2

wp wq

wt−1

wp+1 wq−1Step 2- Calculations.
■ ∆x(wp+1)++, ∆x(wq)++
■ x(wq)− x(wp) = ∆x(wp+1) + . . . + ∆x(wq)
■ ∆x(vk) by (3)
■ ∆x(wq) = x(wq)− x(wp)− ∆x(vk)
■ ∆x(wp+1) = ∆x(wp+1)− ∆x(vk)
■ y(vk) by (2)

We can compute
x(wq)− x(wp)

18 - 7

Shift method – linear time implementation

■ Step 1. computex(vk) and y(vk)

(1) x(vk) =
1
2 (x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2 (x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2 (x(wq)− x(wp) + y(wq)− y(wp))

■ Step 1 revised. compute x(vk)− x(wp) and y(vk)

w1 wt

vk

Gk−1
w2

wp wq

wt−1

wp+1 wq−1Step 2- Calculations.
■ ∆x(wp+1)++, ∆x(wq)++
■ x(wq)− x(wp) = ∆x(wp+1) + . . . + ∆x(wq)
■ ∆x(vk) by (3)
■ ∆x(wq) = x(wq)− x(wp)− ∆x(vk)
■ ∆x(wp+1) = ∆x(wp+1)− ∆x(vk)
■ y(vk) by (2)

We can compute
x(wq)− x(wp)

18 - 8

Shift method – linear time implementation

■ Step 1. computex(vk) and y(vk)

(1) x(vk) =
1
2 (x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2 (x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2 (x(wq)− x(wp) + y(wq)− y(wp))

■ Step 1 revised. compute x(vk)− x(wp) and y(vk)

w1 wt

vk

Gk−1
w2

wp wq

wt−1

wp+1 wq−1Step 2- Calculations.
■ ∆x(wp+1)++, ∆x(wq)++
■ x(wq)− x(wp) = ∆x(wp+1) + . . . + ∆x(wq)
■ ∆x(vk) by (3)
■ ∆x(wq) = x(wq)− x(wp)− ∆x(vk)
■ ∆x(wp+1) = ∆x(wp+1)− ∆x(vk)
■ y(vk) by (2)

We can compute
x(wq)− x(wp)

18 - 9

Shift method – linear time implementation

■ Step 1. computex(vk) and y(vk)

(1) x(vk) =
1
2 (x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2 (x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2 (x(wq)− x(wp) + y(wq)− y(wp))

■ Step 1 revised. compute x(vk)− x(wp) and y(vk)

w1 wt

vk

Gk−1
w2

wp wq

wt−1

wp+1 wq−1Step 2- Calculations.
■ ∆x(wp+1)++, ∆x(wq)++
■ x(wq)− x(wp) = ∆x(wp+1) + . . . + ∆x(wq)
■ ∆x(vk) by (3)
■ ∆x(wq) = x(wq)− x(wp)− ∆x(vk)
■ ∆x(wp+1) = ∆x(wp+1)− ∆x(vk)
■ y(vk) by (2)

We can compute
x(wq)− x(wp)

18 - 10

Shift method – linear time implementation

■ Step 1. computex(vk) and y(vk)

(1) x(vk) =
1
2 (x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2 (x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2 (x(wq)− x(wp) + y(wq)− y(wp))

■ Step 1 revised. compute x(vk)− x(wp) and y(vk)

w1 wt

vk

Gk−1
w2

wp wq

wt−1

wp+1 wq−1Step 2- Calculations.
■ ∆x(wp+1)++, ∆x(wq)++
■ x(wq)− x(wp) = ∆x(wp+1) + . . . + ∆x(wq)
■ ∆x(vk) by (3)
■ ∆x(wq) = x(wq)− x(wp)− ∆x(vk)
■ ∆x(wp+1) = ∆x(wp+1)− ∆x(vk)
■ y(vk) by (2)

We can compute
x(wq)− x(wp)

18 - 11

Shift method – linear time implementation

■ Step 1. computex(vk) and y(vk)

(1) x(vk) =
1
2 (x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2 (x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2 (x(wq)− x(wp) + y(wq)− y(wp))

■ Step 1 revised. compute x(vk)− x(wp) and y(vk)

w1 wt

vk

Gk−1
w2

wp wq

wt−1

wp+1 wq−1Step 2- Calculations.
■ ∆x(wp+1)++, ∆x(wq)++
■ x(wq)− x(wp) = ∆x(wp+1) + . . . + ∆x(wq)
■ ∆x(vk) by (3)
■ ∆x(wq) = x(wq)− x(wp)− ∆x(vk)
■ ∆x(wp+1) = ∆x(wp+1)− ∆x(vk)
■ y(vk) by (2)

We can compute
x(wq)− x(wp)

18 - 12

Shift method – linear time implementation

■ Step 1. computex(vk) and y(vk)

(1) x(vk) =
1
2 (x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2 (x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2 (x(wq)− x(wp) + y(wq)− y(wp))

■ Step 1 revised. compute x(vk)− x(wp) and y(vk)

w1 wt

vk

Gk−1
w2

wp wq

wt−1

wp+1 wq−1Step 2- Calculations.
■ ∆x(wp+1)++, ∆x(wq)++
■ x(wq)− x(wp) = ∆x(wp+1) + . . . + ∆x(wq)
■ ∆x(vk) by (3)
■ ∆x(wq) = x(wq)− x(wp)− ∆x(vk)
■ ∆x(wp+1) = ∆x(wp+1)− ∆x(vk)
■ y(vk) by (2)

After vn, use preorder traversal
to compute x-coordinates

We can compute
x(wq)− x(wp)

19

Literature

■ [dFPP90] de Fraysseix, Pach, Pollack ”How to draw a planar graph on a
grid”, Combinatorica, 1990

	Canonical order
	Definition

	Constraints
	Constraints
	Height
	Height
	Constraints
	Shift method
	Shift method
	Example
	Example
	Planarity
	Example
	Planarity
	Pseudocode
	Linear time implementation
	Linear time implementation

	Literature

