
1

Visualisation of graphs

Shift Method
Planar straight-line drawings

+2+1

Antonios Symvonis · Chrysanthi Raftopoulou
Fall semester 2022

The original slides of this presentation were created by researchers at Karlsruhe Institute of Technology (KIT), TU Wien, U Wuerzburg, U Konstanz, ...
The original presentation was modified/updated by A. Symvonis and C. Raftopoulou



2 - 1

Planar straight-line drawings

Theorem. [De Fraysseix, Pach, Pollack ’90]
Every n-vertex planar graph has a planar straight-line
drawing of size (2n− 4)× (n− 2).

Theorem. [Schnyder ’90] Every n-vertex planar graph has a
planar straight-line drawing of size (n− 2)× (n− 2).
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Planar straight-line drawings

Theorem. [De Fraysseix, Pach, Pollack ’90]
Every n-vertex planar graph has a planar straight-line
drawing of size (2n− 4)× (n− 2).

Theorem. [Schnyder ’90] Every n-vertex planar graph has a
planar straight-line drawing of size (n− 2)× (n− 2).

Idea: Use the canonical order.
■ Start with single edge (v1, v2). Let this be G2.
■ To obtain Gi+1, add vi+1 to Gi so that

neighbours of vi+1 are on the outer face of Gi.
■ Neighbours of vi+1 in Gi have to form path of

length at least two.

vk

v1 v2
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Canonical order – definition

Definition.
Let G = (V, E) be a triangulated plane graph on n ≥ 3 vertices.
An order π = (v1, v2, . . . , vn) is called a canonical order, if the
following conditions hold for each k, 3 ≤ k ≤ n:

■ (C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

■ (C2) Edge (v1, v2) belongs to the outer face of Gk.

■ (C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the boundary of Gk
consecutively.
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Canonical order – definition

Definition.
Let G = (V, E) be a triangulated plane graph on n ≥ 3 vertices.
An order π = (v1, v2, . . . , vn) is called a canonical order, if the
following conditions hold for each k, 3 ≤ k ≤ n:

■ (C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

■ (C2) Edge (v1, v2) belongs to the outer face of Gk.

■ (C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the boundary of Gk
consecutively.

Lemma.
Every triangulated plane graph has a canonical order.
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Constraints

v1 v2v3

v4 v5

v6
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Constraints

v1 v2

v1 v2v3

v4 v5

v6
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Constraints

v1 v2

v3

v1 v2v3

v4 v5

v6
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Constraints

v1 v2

v3
v4

v1 v2v3

v4 v5

v6
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Constraints

v1 v2

v3
v4 v5

v1 v2v3

v4 v5

v6
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Constraints

v1 v2

v3
v4 v5

v6

v1 v2v3

v4 v5

v6
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Constraints

v1 v2

v3
v4 v5

v1 v2v3

v4 v5

v6

v6
visibility issue!
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Constraints

Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ neighbors of vk on Gk−1 should be drawn

x-monotone,
■ vk is placed above its neighbors on Gk−1.

v1 v2

v3
v4 v5

v6

v1 v2v3

v4 v5

v6

vk

v1 v2
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Constraints

Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ neighbors of vk on Gk−1 should be drawn

x-monotone,
■ vk is placed above its neighbors on Gk−1.

v1 v2

v3
v4 v5

v6

v1 v2v3

v4 v5

v6

vk

v1 v2
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Constraints

Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ neighbors of vk on Gk−1 should be drawn

x-monotone,
■ vk is placed above its neighbors on Gk−1.

v1 v2

v3
v4 v5

v6

v1 v2v3

v4 v5

v6

vk

v1 v2
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Constraints

Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ vk is placed above its neighbors on Gk−1.v1 v2v3

v4 v5

v6
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Constraints

Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ vk is placed above its neighbors on Gk−1.

v1 v2

v1 v2v3

v4 v5

v6

G2: v1 : (0, 0), v2 : (1, 0)
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Constraints

Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ vk is placed above its neighbors on Gk−1.

v1 v2

v1 v2v3

v4 v5

v6

G2: v1 : (0, 0), v2 : (1, 0)

v3
■ Need to make room for v3
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Constraints

Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ vk is placed above its neighbors on Gk−1.

v1 v2

v1 v2v3

v4 v5

v6

G2: v1 : (0, 0), v2 : (1, 0)

v3
■ Need to make room for v3
■ Shift v2 to the right
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Constraints

Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ vk is placed above its neighbors on Gk−1.v1 v2v3

v4 v5

v6

G2: v1 : (0, 0), v2 : (1, 0)

v1 v2

G3: v1 : (0, 0), v2 : (2, 0), v3 : (1, 1)

v3
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Constraints

Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ vk is placed above its neighbors on Gk−1.v1 v2v3

v4 v5

v6

G2: v1 : (0, 0), v2 : (1, 0)

v1 v2

G3: v1 : (0, 0), v2 : (2, 0), v3 : (1, 1)

v3

v4
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Constraints

Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ vk is placed above its neighbors on Gk−1.v1 v2v3

v4 v5

v6

G2: v1 : (0, 0), v2 : (1, 0)

v1 v2

G3: v1 : (0, 0), v2 : (2, 0), v3 : (1, 1)

v3

v4
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Constraints

Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ vk is placed above its neighbors on Gk−1.v1 v2v3

v4 v5

v6

G2: v1 : (0, 0), v2 : (1, 0)

G3: v1 : (0, 0), v2 : (2, 0), v3 : (1, 1)

v1 v2

G4: v1 : (0, 0), v2 : (3, 0), v3 : (2, 1), v4 : (1, 2)

v3

v4
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Constraints

Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ vk is placed above its neighbors on Gk−1.v1 v2v3

v4 v5

v6

G2: v1 : (0, 0), v2 : (1, 0)

G3: v1 : (0, 0), v2 : (2, 0), v3 : (1, 1)v5

v1 v2

G4: v1 : (0, 0), v2 : (3, 0), v3 : (2, 1), v4 : (1, 2)

v3

v4
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Constraints

Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ vk is placed above its neighbors on Gk−1.v1 v2v3

v4 v5

v6

G2: v1 : (0, 0), v2 : (1, 0)

G3: v1 : (0, 0), v2 : (2, 0), v3 : (1, 1)v5

v1 v2

G4: v1 : (0, 0), v2 : (3, 0), v3 : (2, 1), v4 : (1, 2)

v3

v4
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Constraints

Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ vk is placed above its neighbors on Gk−1.v1 v2v3

v4 v5

v6

G2: v1 : (0, 0), v2 : (1, 0)

G3: v1 : (0, 0), v2 : (2, 0), v3 : (1, 1)

G4: v1 : (0, 0), v2 : (3, 0), v3 : (2, 1), v4 : (1, 2)

G5: v1 : (0, 0), v2 : (4, 0), v3 : (2, 1), v4 : (1, 2), v5 : (3, 2)

v1 v2

v4 v5

v3
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Constraints

Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ vk is placed above its neighbors on Gk−1.

G2: v1 : (0, 0), v2 : (1, 0)

G3: v1 : (0, 0), v2 : (2, 0), v3 : (1, 1)

G4: v1 : (0, 0), v2 : (3, 0), v3 : (2, 1), v4 : (1, 2)

G5: v1 : (0, 0), v2 : (4, 0), v3 : (2, 1), v4 : (1, 2), v5 : (3, 2)

v1 v2

v4 v5

v3
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Constraints

Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ vk is placed above its neighbors on Gk−1.

G2: v1 : (0, 0), v2 : (1, 0)

G3: v1 : (0, 0), v2 : (2, 0), v3 : (1, 1)

G4: v1 : (0, 0), v2 : (3, 0), v3 : (2, 1), v4 : (1, 2)

G5: v1 : (0, 0), v2 : (4, 0), v3 : (2, 1), v4 : (1, 2), v5 : (3, 2)

v1 v2

v4 v5

v3

v6

G: v6 : (2, 5)
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Height

v1 v2

v4 v5

v3

v6
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Height

v1 v2

v4 v5

v3

v6

Placement of v6 depends on
■ the slope of (v1, v4), (v2, v5)
■ and the length of (v1, v2)

(which is at most n− 2)
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Height

v1 v2

v4 v5

v3

v6

Placement of v6 depends on
■ the slope of (v1, v4), (v2, v5)
■ and the length of (v1, v2)

(which is at most n− 2)

Can the height exceed O(n)?
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Height

v1 v2

vn
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Height

■ v3 at height 1
■ v4, v5 at height 2
■ v6, v7 at height 3
■ v2i, v2i+1 at height i
■ vn−2, vn−1 at height n−2

2v1 v2

vn
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Height

■ v3 at height 1
■ v4, v5 at height 2
■ v6, v7 at height 3
■ v2i, v2i+1 at height i
■ vn−2, vn−1 at height n−2

2v1 v2

vn
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Height

■ v3 at height 1
■ v4, v5 at height 2
■ v6, v7 at height 3
■ v2i, v2i+1 at height i
■ vn−2, vn−1 at height n−2

2v1 v2

vn
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Height

■ v3 at height 1
■ v4, v5 at height 2
■ v6, v7 at height 3
■ v2i, v2i+1 at height i
■ vn−2, vn−1 at height n−2

2v1 v2

vn
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Height

■ v3 at height 1
■ v4, v5 at height 2
■ v6, v7 at height 3
■ v2i, v2i+1 at height i
■ vn−2, vn−1 at height n−2

2v1 v2

vn

vn−2 vn−1
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Height

■ v3 at height 1
■ v4, v5 at height 2
■ v6, v7 at height 3
■ v2i, v2i+1 at height i
■ vn−2, vn−1 at height n−2

2

■ Slope for (v1, vn−2) =
n−2
2

■ Slope for (v2, vn−1) = − n−2
2

■ Length of (v1, v2) = n− 2

v1 v2

vn
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Height

■ v3 at height 1
■ v4, v5 at height 2
■ v6, v7 at height 3
■ v2i, v2i+1 at height i
■ vn−2, vn−1 at height n−2

2

■ Slope for (v1, vn−2) =
n−2
2

■ Slope for (v2, vn−1) = − n−2
2

■ Length of (v1, v2) = n− 2

v1 v2

vn vn above
(n−2)2

4
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Height

v1 v2

vn

Stretching?
■ decrease the height
■ increase the width
■ vertices on the grid?

v1 v2

vn



7 - 10

Height

v1 v2

vn

Stretching?
■ decrease the height
■ increase the width
■ vertices on the grid?

Shifting
■ control slopes
■ additional shifting at each step
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Constraints
Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn with slope ±1,

v1 v2v3

v4 v5

v6
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Constraints
Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn with slope ±1,

v1 v2
v1 v2v3

v4 v5

v6
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Constraints
Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
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drawn with slope ±1,

v1 v2
v1 v2v3

v4 v5

v6

v3
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Constraints
Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn with slope ±1,

v1 v2
v1 v2v3

v4 v5

v6

v3
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Constraints
Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn with slope ±1,

v1 v2v3

v4 v5

v6

v1 v2

v3
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Constraints
Constraints:
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Constraints
Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn with slope ±1,

v1 v2v3

v4 v5

v6

v6

v1 v2

v4 v5

v3



8 - 15

Constraints
Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ boundary of Gk−1 (minus edge (v1, v2)) is
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v4 v5
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Constraints
Constraints:
Gk−1 is drawn such that
■ v1 is leftmost vertex, v2 is rightmost vertex,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn with slope ±1,

v1 v2v3

v4 v5

v6

v1 v2

v4 v5

v3

v6

Remarks:
■ 2 shifts per step
■ width < 2n
■ height < n
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Shift method

Algorithm invariants/constraints:
Gk−1 is drawn such that
■ v1 is on (0, 0), v2 is on (2k− 4, 0),
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ each edge of the boundary of Gk−1 (minus

edge (v1, v2)) is drawn with slopes ±1.

v1 v2

Gk−1
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Shift method

Algorithm invariants/constraints:
Gk−1 is drawn such that
■ v1 is on (0, 0), v2 is on (2k− 4, 0),
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ each edge of the boundary of Gk−1 (minus

edge (v1, v2)) is drawn with slopes ±1.

v1 v2

Gk−1

vk

wp wq
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Shift method

Algorithm invariants/constraints:
Gk−1 is drawn such that
■ v1 is on (0, 0), v2 is on (2k− 4, 0),
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ each edge of the boundary of Gk−1 (minus

edge (v1, v2)) is drawn with slopes ±1.

v1 v2

Gk−1

vk

wp wq
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Shift method

Algorithm invariants/constraints:
Gk−1 is drawn such that
■ v1 is on (0, 0), v2 is on (2k− 4, 0),
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ each edge of the boundary of Gk−1 (minus

edge (v1, v2)) is drawn with slopes ±1.

v1 v2

Overlaps!

Gk−1

vk

wp wq
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Shift method

Algorithm invariants/constraints:
Gk−1 is drawn such that
■ v1 is on (0, 0), v2 is on (2k− 4, 0),
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ each edge of the boundary of Gk−1 (minus

edge (v1, v2)) is drawn with slopes ±1.

v1 v2

Overlaps!

What is the solution?

Gk−1

vk

wp wq
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Shift method

Algorithm invariants/constraints:
Gk−1 is drawn such that
■ v1 is on (0, 0), v2 is on (2k− 4, 0),
■ boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
■ each edge of the boundary of Gk−1 (minus

edge (v1, v2)) is drawn with slopes ±1.

v1 v2

What is the solution?

Gk−1

vk

wp wq
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Shift method
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drawn x-monotone,
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■ An internal node shifts with
its covering outer vertex

■ Define covering
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w1 wt

vk

Gk−1

Observations.
■ Each internal vertex is covered exactly once.
■ Covering relation defines a tree in G
■ and a forest in Gi, 1 ≤ i ≤ n− 1.

w2

wp wq

wt−1

L(wi)

Definition.
L(wi) is the set of vertices covered by wi
L(wi) is the subtree of the covering tree rooted at wi
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Lemma. Let 0 < δ1 ≤ δ2 ≤ · · · ≤ δt ∈N, such
that δq − δp ≥ 2 and even.
If we shift L(wi) by δi to the right, we get a planar
straight-line drawing.
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Observations.
■ Each internal vertex is covered exactly once.
■ Covering relation defines a tree in G
■ and a forest in Gi, 1 ≤ i ≤ n− 1.w2

wp wq

wt−1

L(wi)

Proof by induction:
If Gk−1 straight-line planar, then also Gk.

Lemma. Let 0 < δ1 ≤ δ2 ≤ · · · ≤ δt ∈N, such
that δq − δp ≥ 2 and even.
If we shift L(wi) by δi to the right, we get a planar
straight-line drawing.
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Shift method – pseudocode

Let v1, . . . , vn be a canonical order of G
for i = 1 to 3 do

L(vi)← {vi}
P(v1)← (0, 0); P(v2)← (2, 0), P(v3)← (1, 1)
for k = 4 to n do

Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the boundary of Gk−1
and let wp, . . . , wq be the neighbours of vk

for ∀v ∈ ∪q−1
j=p+1L(wj) do

x(v)← x(v) + 1

for ∀v ∈ ∪t
j=qL(wj) do

x(v)← x(v) + 2

P(vk)← intersection of +1/−1 edges from P(wp) and P(wq)

L(vk)← ∪
q−k
j=p+1L(wj) ∪ {vk}
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Let v1, . . . , vn be a canonical order of G
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for k = 4 to n do

Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the boundary of Gk−1
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x(v)← x(v) + 1
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P(vk)← intersection of +1/−1 edges from P(wp) and P(wq)
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■ Runtime O(n2)
■ Can we do better?
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Shift method – linear time implementation

Idea:
■ Instead of storing explicit x-coordinates,

we store x differences.
■ We need a spanning tree rooted at v1
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