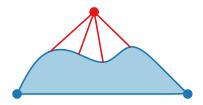
Visualisation of graphs Planar straight-line drawings Shift Method

Antonios Symvonis · Chrysanthi Raftopoulou

Fall semester 2022



Planar straight-line drawings

Theorem. [De Fraysseix, Pach, Pollack '90] Every *n*-vertex planar graph has a planar straight-line drawing of size $(2n - 4) \times (n - 2)$.

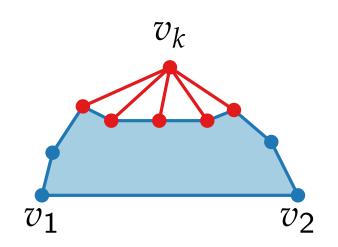
Theorem. [Schnyder '90] Every *n*-vertex planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$.

Planar straight-line drawings

Theorem. [De Fraysseix, Pach, Pollack '90] Every *n*-vertex planar graph has a planar straight-line drawing of size $(2n - 4) \times (n - 2)$.

Idea: Use the canonical order.

- Start with single edge (v_1, v_2) . Let this be G_2 .
- To obtain G_{i+1} , add v_{i+1} to G_i so that neighbours of v_{i+1} are on the outer face of G_i .
- Neighbours of v_{i+1} in G_i have to form path of length at least two.



Theorem. [Schnyder '90] Every *n*-vertex planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$.

Definition.

Let G = (V, E) be a triangulated plane graph on $n \ge 3$ vertices. An order $\pi = (v_1, v_2, ..., v_n)$ is called a **canonical order**, if the following conditions hold for each k, $3 \le k \le n$:

Definition.

Let G = (V, E) be a triangulated plane graph on $n \ge 3$ vertices. An order $\pi = (v_1, v_2, ..., v_n)$ is called a **canonical order**, if the following conditions hold for each k, $3 \le k \le n$:

(C1) Vertices $\{v_1, \ldots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .

Definition.

Let G = (V, E) be a triangulated plane graph on $n \ge 3$ vertices. An order $\pi = (v_1, v_2, ..., v_n)$ is called a **canonical order**, if the following conditions hold for each k, $3 \le k \le n$:

- **(C1)** Vertices $\{v_1, \ldots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- **(C2)** Edge (v_1, v_2) belongs to the outer face of G_k .

Definition.

Let G = (V, E) be a triangulated plane graph on $n \ge 3$ vertices. An order $\pi = (v_1, v_2, ..., v_n)$ is called a **canonical order**, if the following conditions hold for each k, $3 \le k \le n$:

- **(C1)** Vertices $\{v_1, \ldots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- **(C2)** Edge (v_1, v_2) belongs to the outer face of G_k .
- **(C3)** If k < n then vertex v_{k+1} lies in the outer face of G_k , and all neighbors of v_{k+1} in G_k appear on the boundary of G_k consecutively.

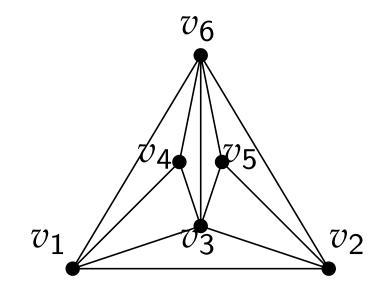
Definition.

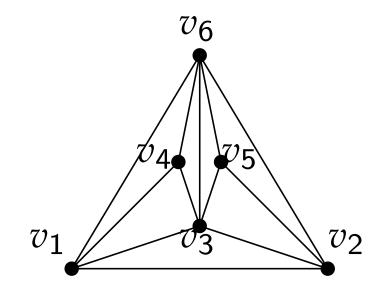
Let G = (V, E) be a triangulated plane graph on $n \ge 3$ vertices. An order $\pi = (v_1, v_2, \dots, v_n)$ is called a **canonical order**, if the following conditions hold for each k, $3 \le k \le n$:

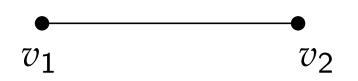
- **(C1)** Vertices $\{v_1, \ldots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- **(C2)** Edge (v_1, v_2) belongs to the outer face of G_k .
- **(C3)** If k < n then vertex v_{k+1} lies in the outer face of G_k , and all neighbors of v_{k+1} in G_k appear on the boundary of G_k consecutively.

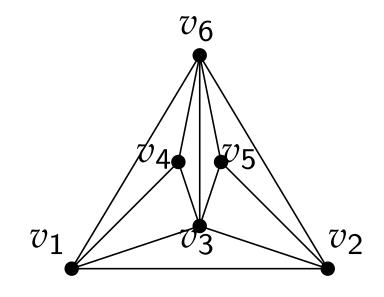
Lemma.

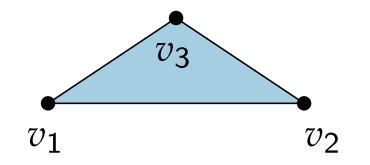
Every triangulated plane graph has a canonical order.

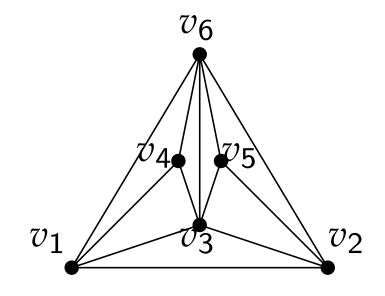


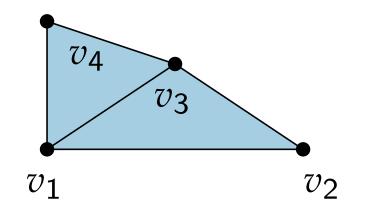


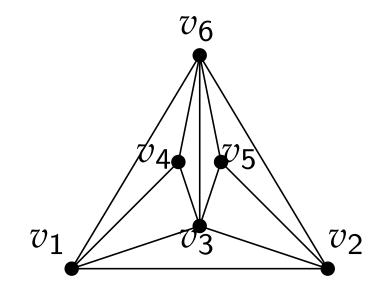


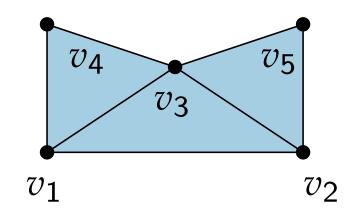


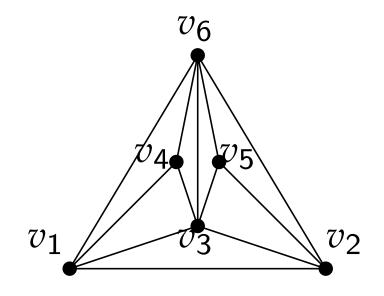


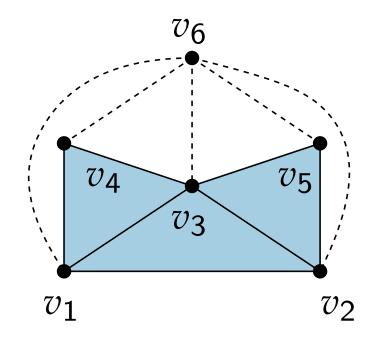


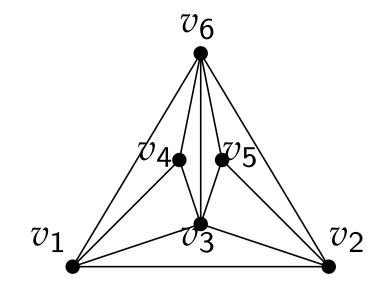


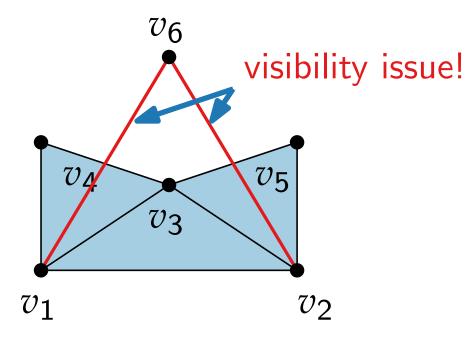




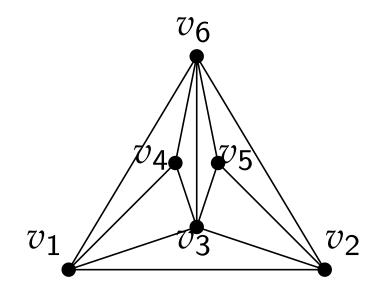






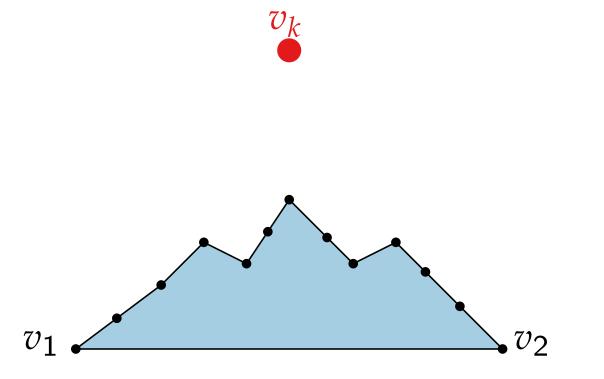


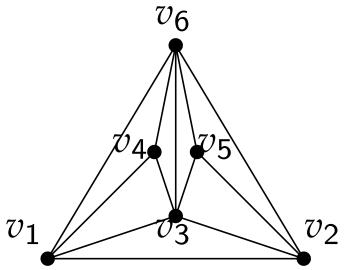
4 - 7



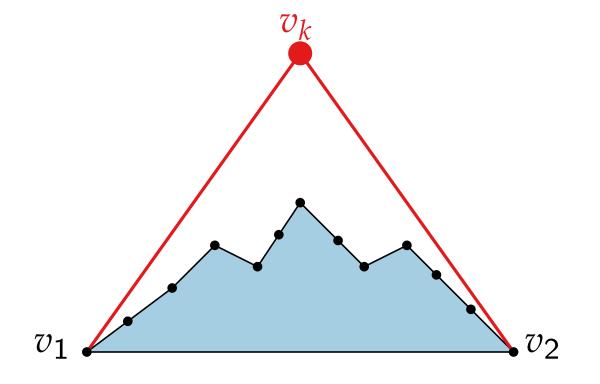
v_{1} v_{3} v_{5} v_{2}

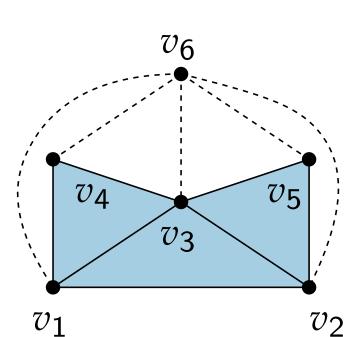
Constraints: G_{k-1} is drawn such that

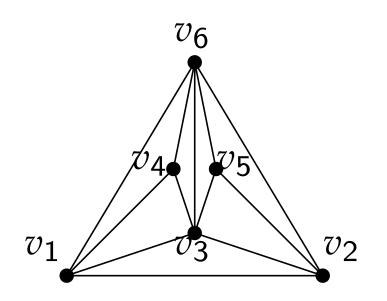




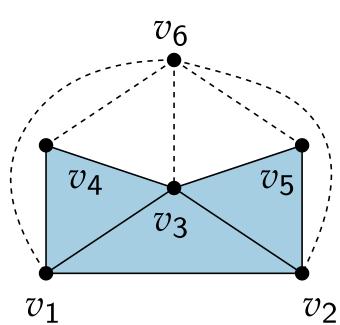
- G_{k-1} is drawn such that
- \bullet v_1 is leftmost vertex, v_2 is rightmost vertex,

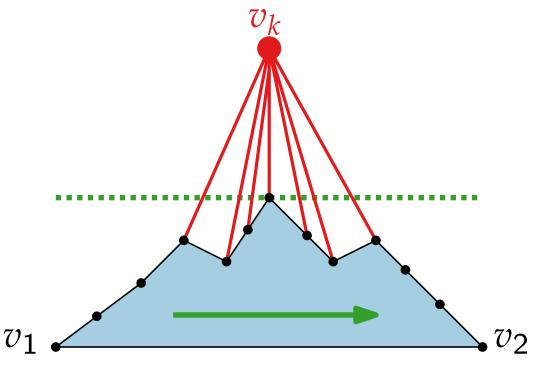


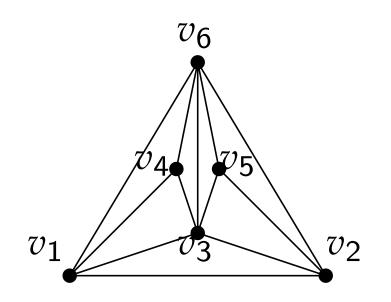




- G_{k-1} is drawn such that
- \bullet v_1 is leftmost vertex, v_2 is rightmost vertex,
- neighbors of v_k on G_{k-1} should be drawn *x*-monotone,
- \bullet v_k is placed above its neighbors on G_{k-1} .



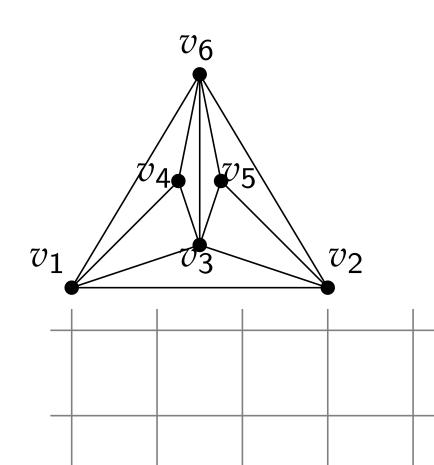




- G_{k-1} is drawn such that
- \bullet v_1 is leftmost vertex, v_2 is rightmost vertex,
- boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone,
- \bullet v_k is placed above its neighbors on G_{k-1} .

 \mathcal{U}_1

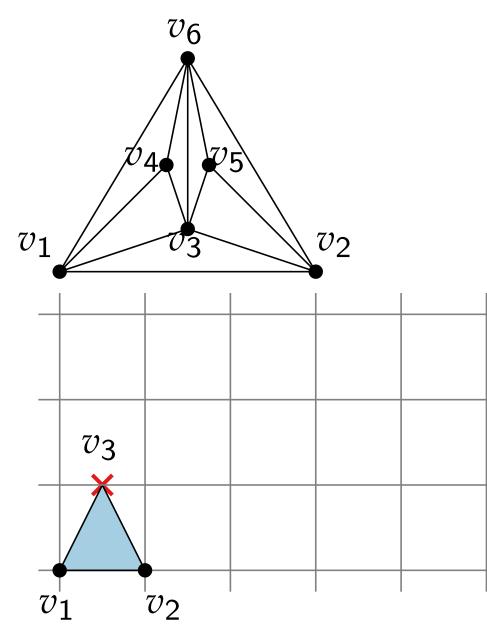
 v_2



Constraints:

- G_{k-1} is drawn such that
- \bullet v_1 is leftmost vertex, v_2 is rightmost vertex,
- boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn *x*-monotone,
- \bullet v_k is placed above its neighbors on G_{k-1} .

 $G_2: v_1: (0, 0), v_2: (1, 0)$

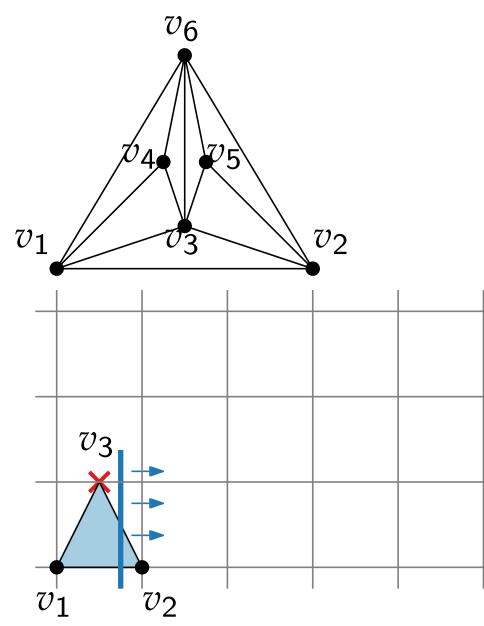


Constraints:

- G_{k-1} is drawn such that
- \bullet v_1 is leftmost vertex, v_2 is rightmost vertex,
 - boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn *x*-monotone,
- \bullet v_k is placed above its neighbors on G_{k-1} .

 $G_2: v_1: (0, 0), v_2: (1, 0)$

Need to make room for v_3

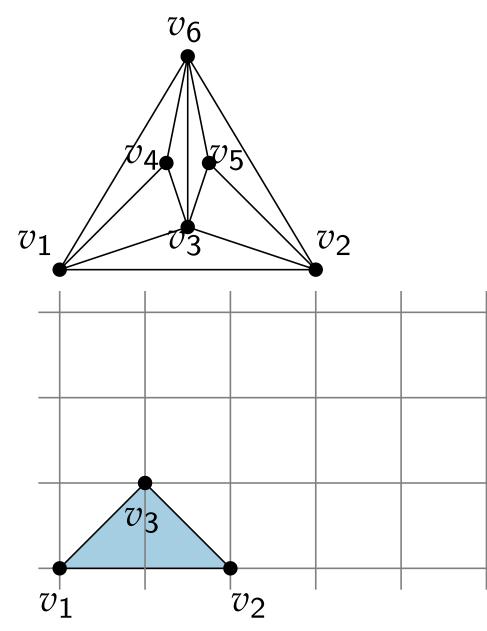


Constraints:

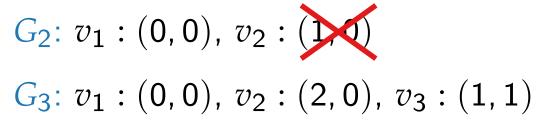
- G_{k-1} is drawn such that
- \bullet v_1 is leftmost vertex, v_2 is rightmost vertex,
- boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn *x*-monotone,
- \bullet v_k is placed above its neighbors on G_{k-1} .

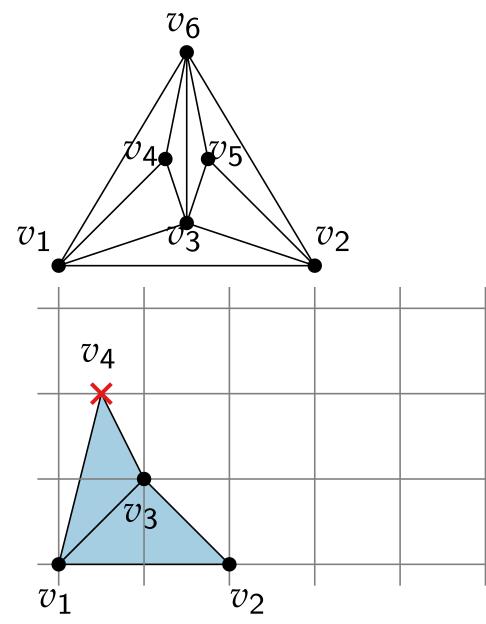
 $G_2: v_1: (0, 0), v_2: (1, 0)$

- Need to make room for v_3
- **Shift** v_2 to the right

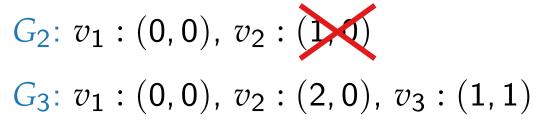


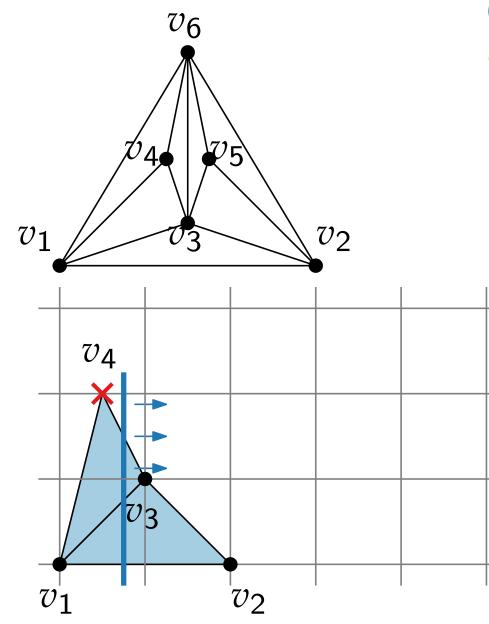
- G_{k-1} is drawn such that
- \bullet v_1 is leftmost vertex, v_2 is rightmost vertex,
- boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn *x*-monotone,
- \bullet v_k is placed above its neighbors on G_{k-1} .



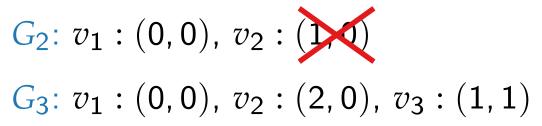


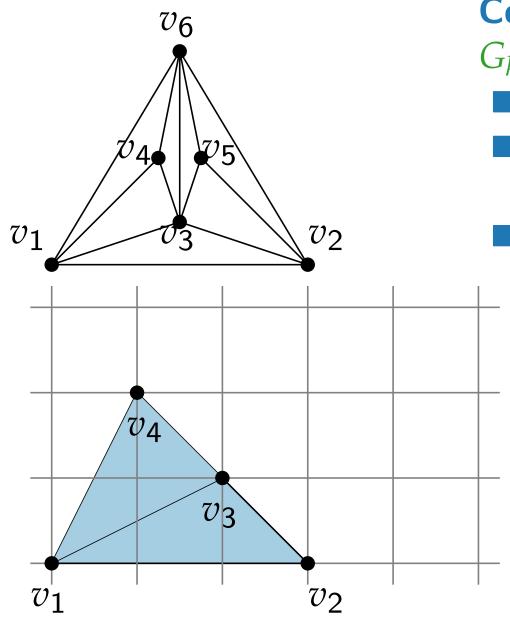
- G_{k-1} is drawn such that
- \bullet v_1 is leftmost vertex, v_2 is rightmost vertex,
- boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn *x*-monotone,
- \bullet v_k is placed above its neighbors on G_{k-1} .



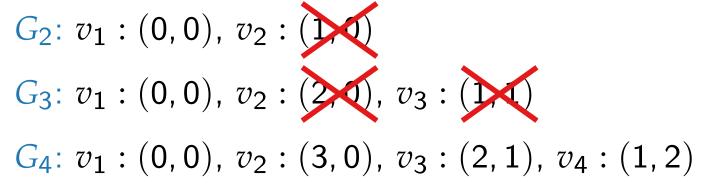


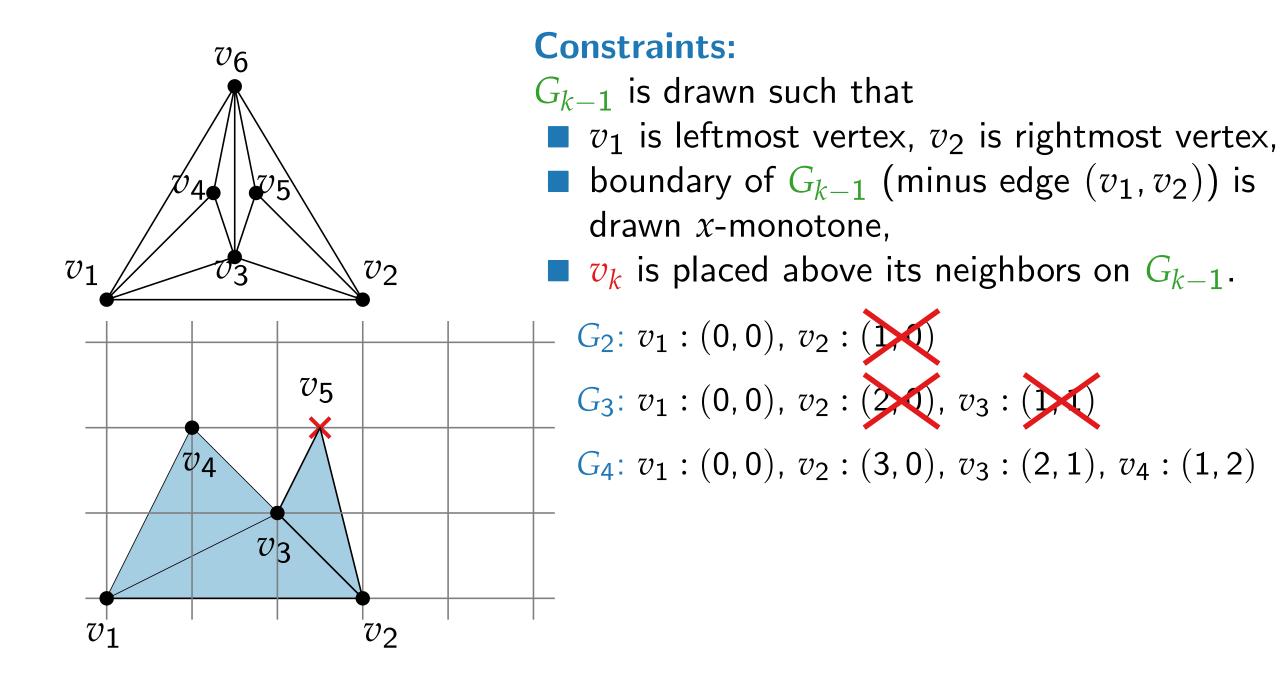
- G_{k-1} is drawn such that
- \bullet v_1 is leftmost vertex, v_2 is rightmost vertex,
- boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn *x*-monotone,
- \bullet v_k is placed above its neighbors on G_{k-1} .

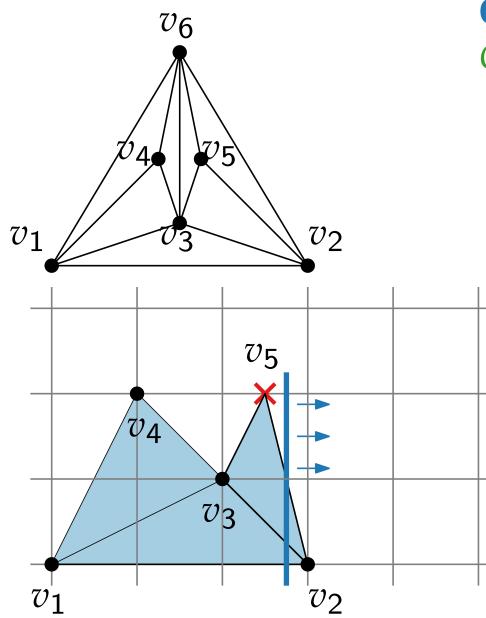




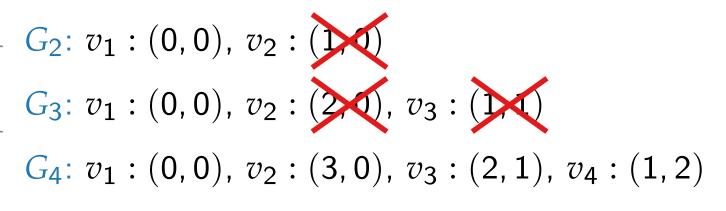
- G_{k-1} is drawn such that
- \bullet v_1 is leftmost vertex, v_2 is rightmost vertex,
- boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn *x*-monotone,
- \bullet v_k is placed above its neighbors on G_{k-1} .

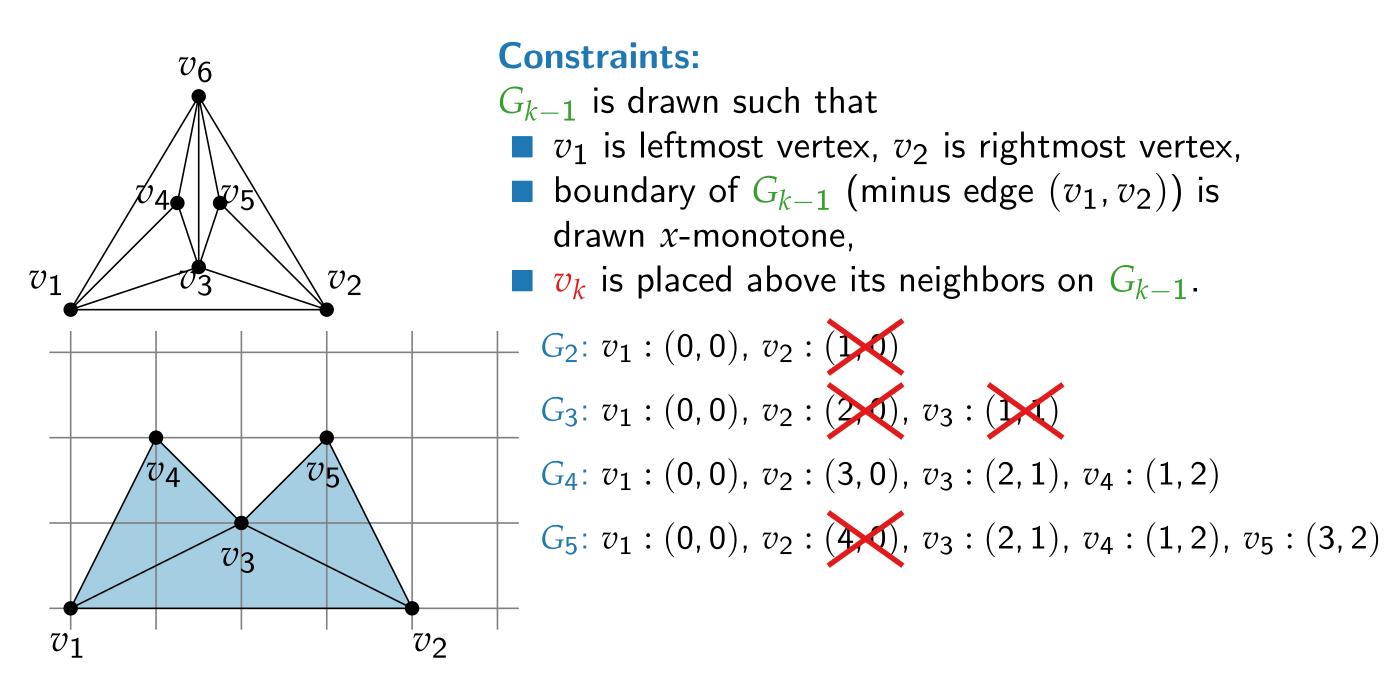


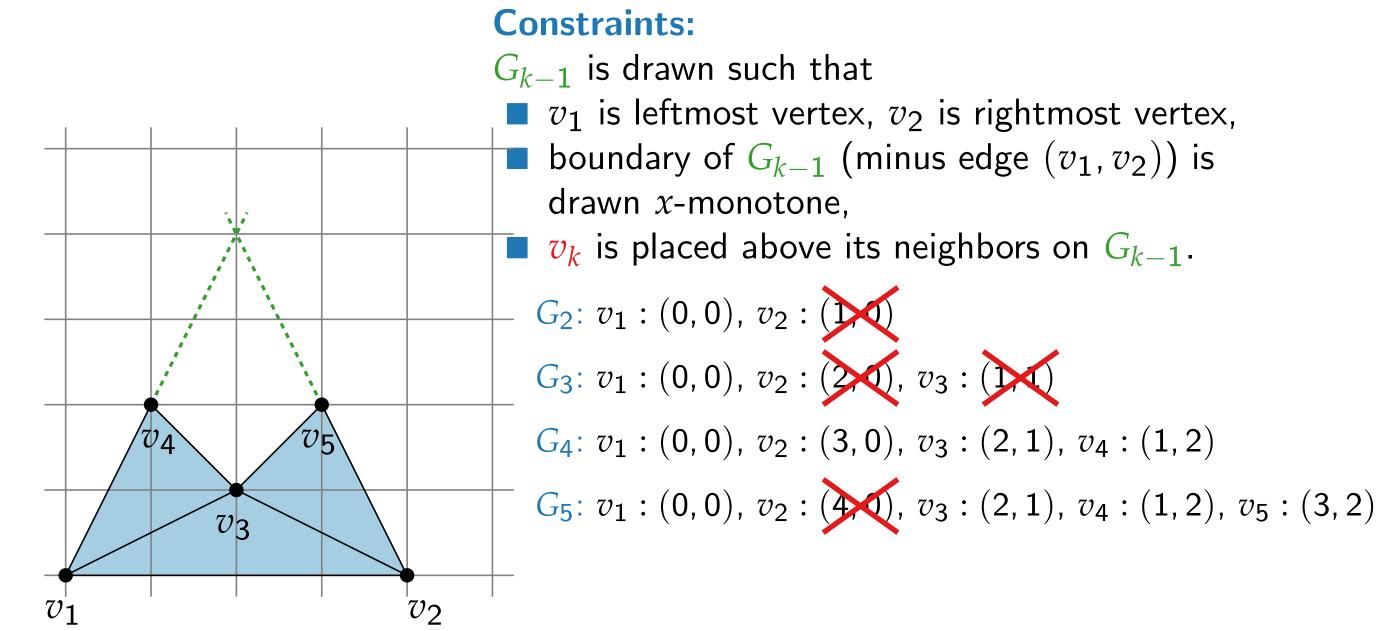


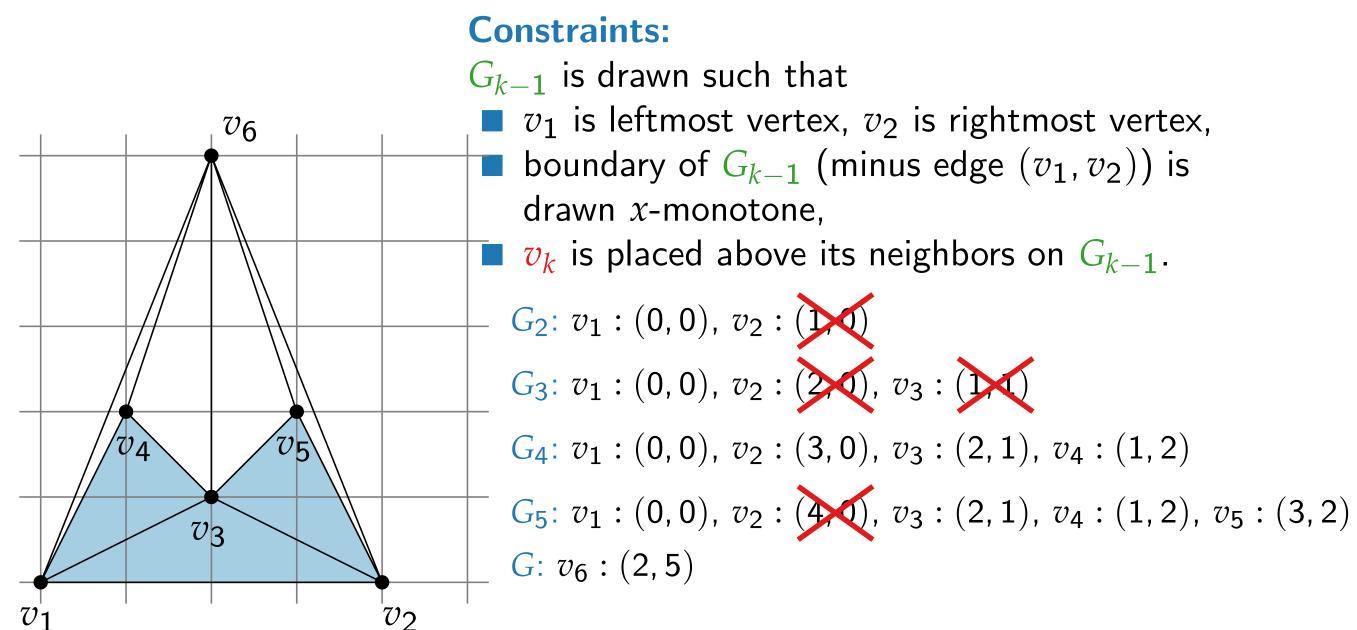


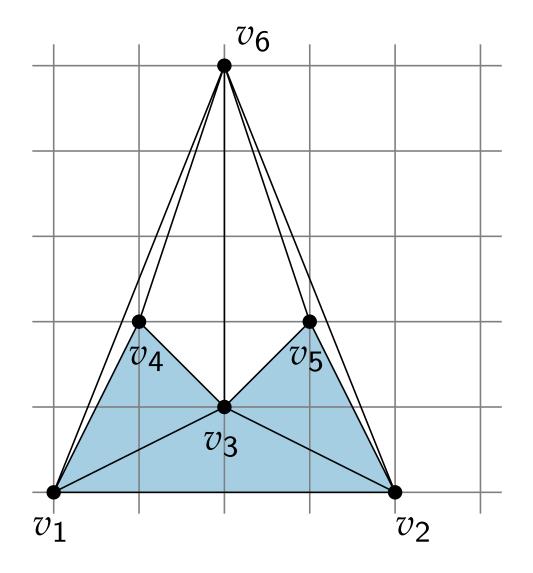
- G_{k-1} is drawn such that
- \bullet v_1 is leftmost vertex, v_2 is rightmost vertex,
- boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn *x*-monotone,
- \bullet v_k is placed above its neighbors on G_{k-1} .

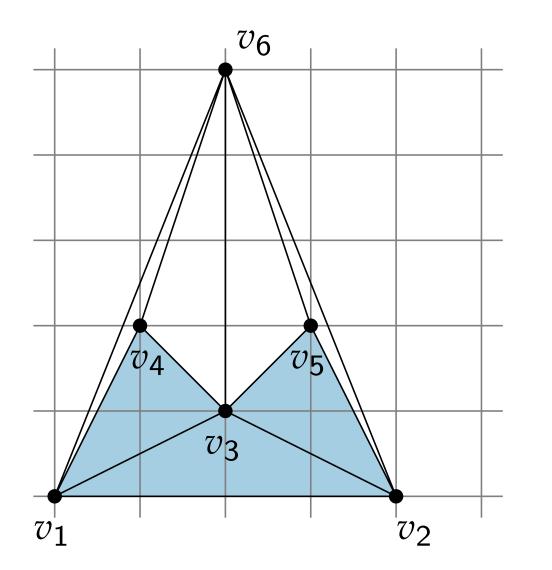




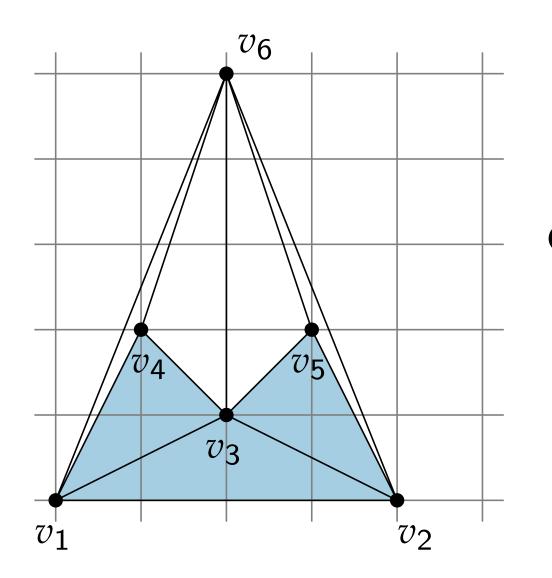








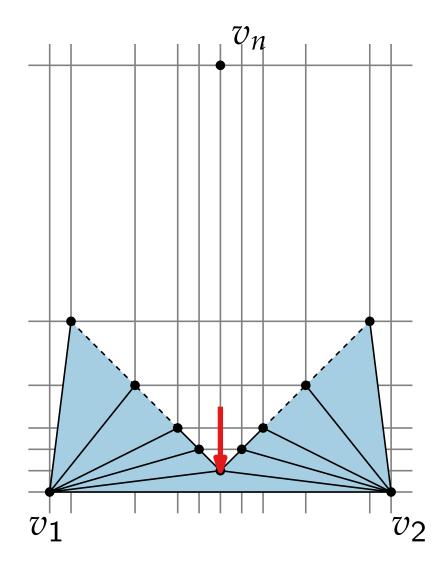
Placement of v_6 depends on the slope of (v_1, v_4) , (v_2, v_5) and the length of (v_1, v_2) (which is at most n - 2)



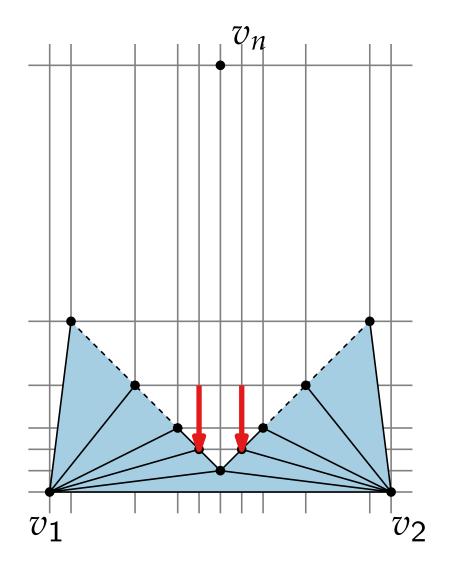
Placement of v_6 depends on the slope of (v_1, v_4) , (v_2, v_5) and the length of (v_1, v_2) (which is at most n - 2)

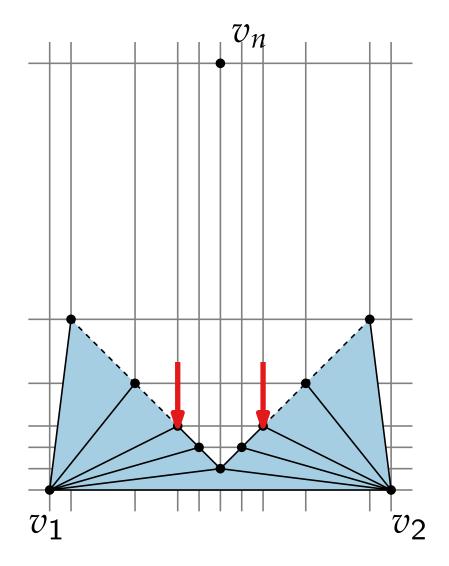
Can the **height** exceed $\mathcal{O}(n)$?

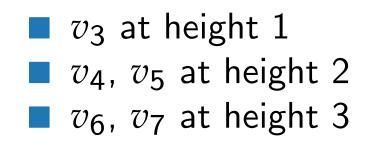


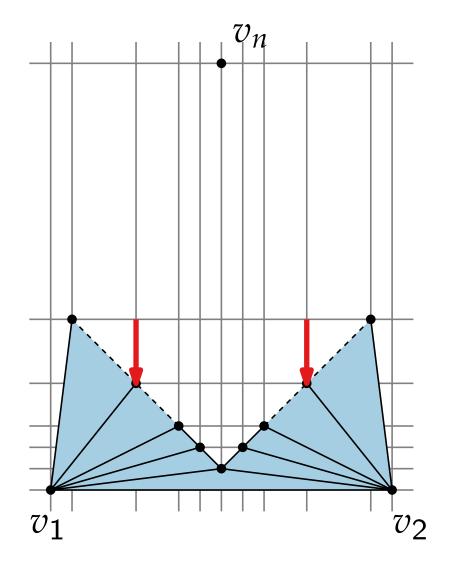


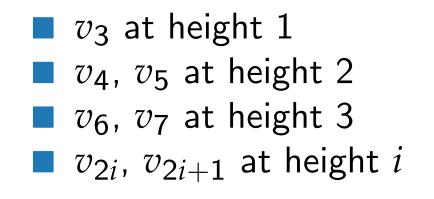
 \bullet v_3 at height 1

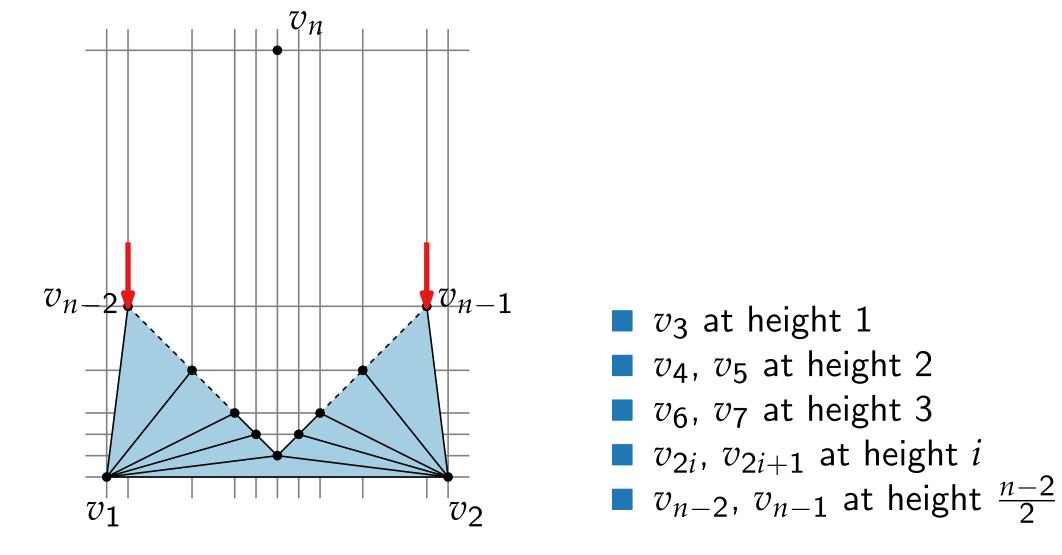


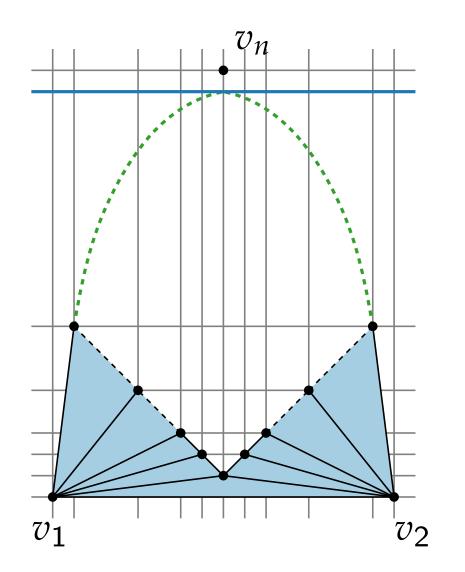




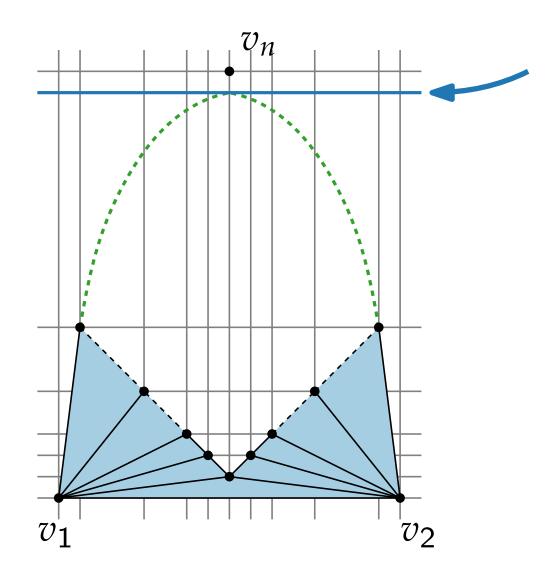




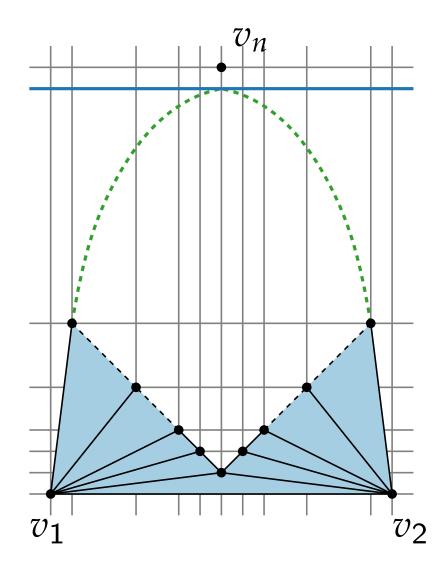




Slope for (v₁, v_{n-2}) =
$$\frac{n-2}{2}$$
 Slope for (v₂, v_{n-1}) = $-\frac{n-2}{2}$
 Length of (v₁, v₂) = n - 2

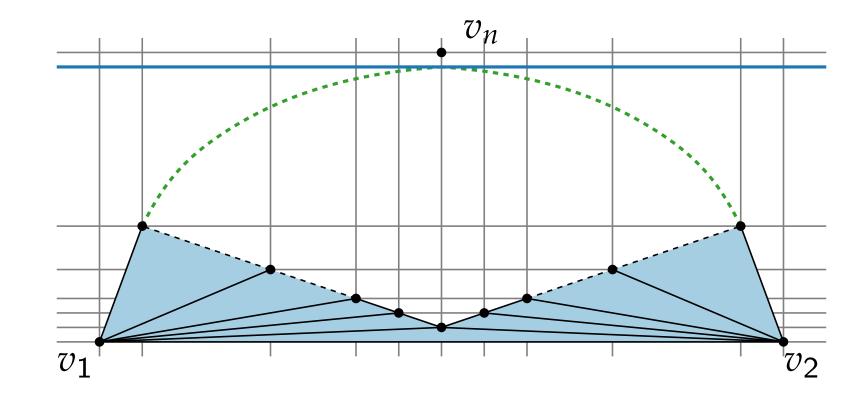


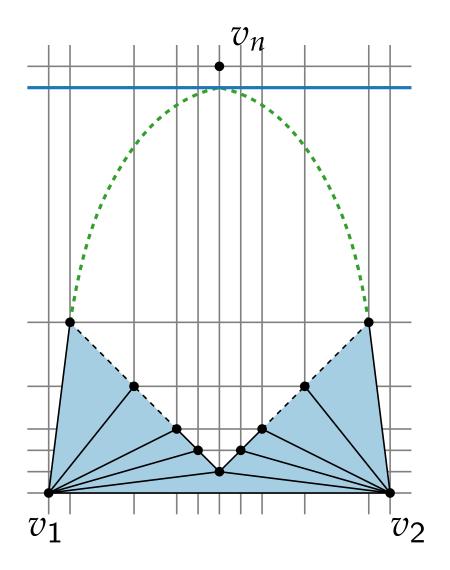
v_n above
$$\frac{(n-2)^2}{4}$$
Slope for $(v_1, v_{n-2}) = \frac{n-2}{2}$
Slope for $(v_2, v_{n-1}) = -\frac{n-2}{2}$
Length of $(v_1, v_2) = n - 2$



Stretching?

- decrease the height
- increase the width
- vertices on the grid?





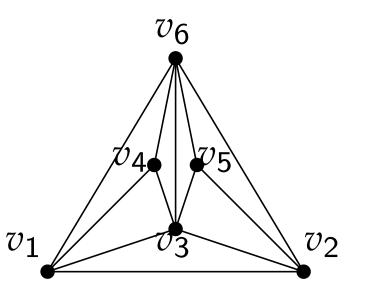
Stretching?

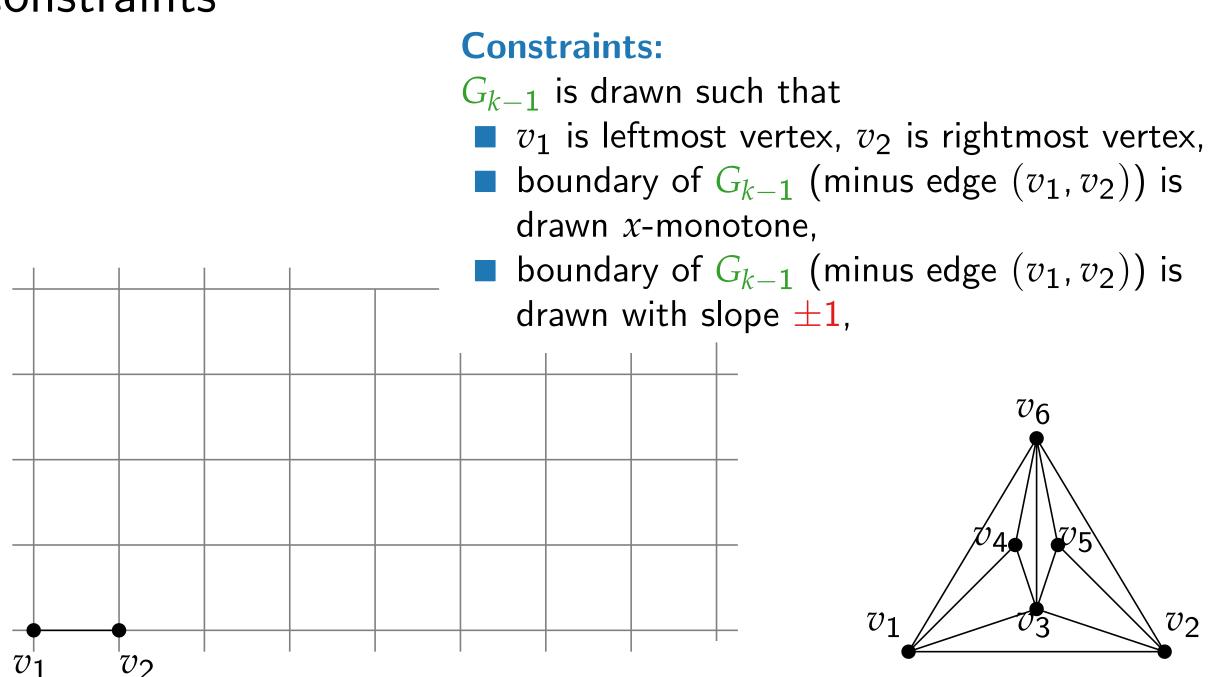
- decrease the height
- increase the width
- vertices on the grid?

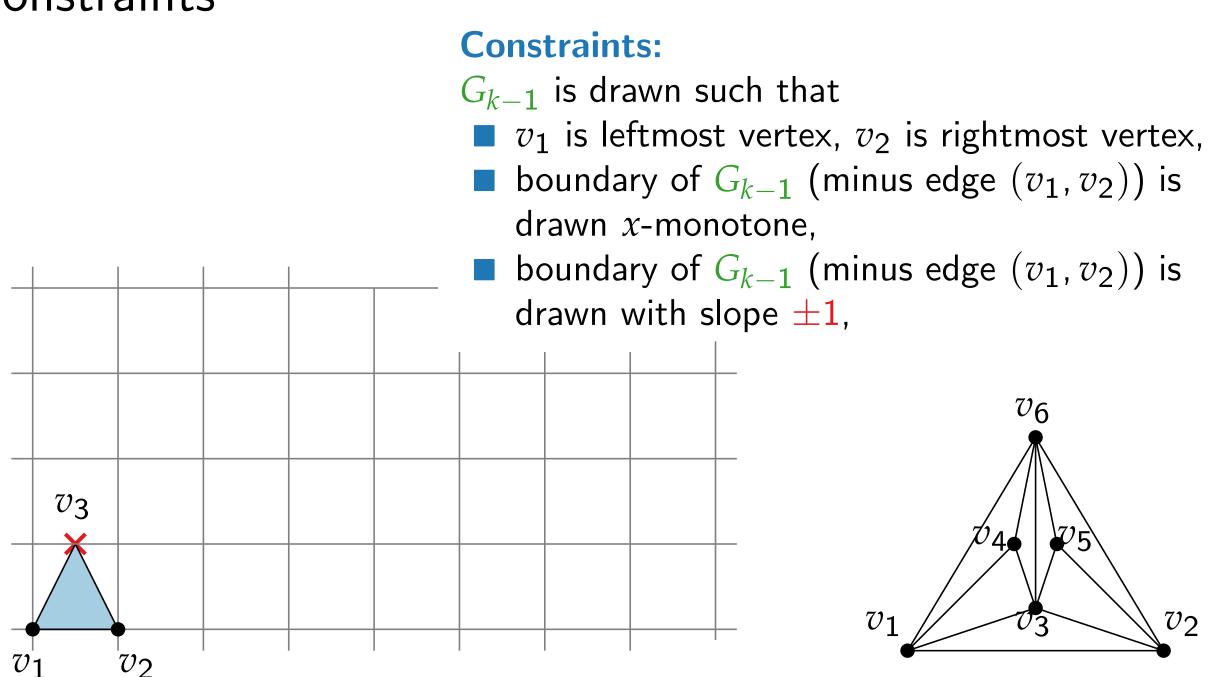
Shifting

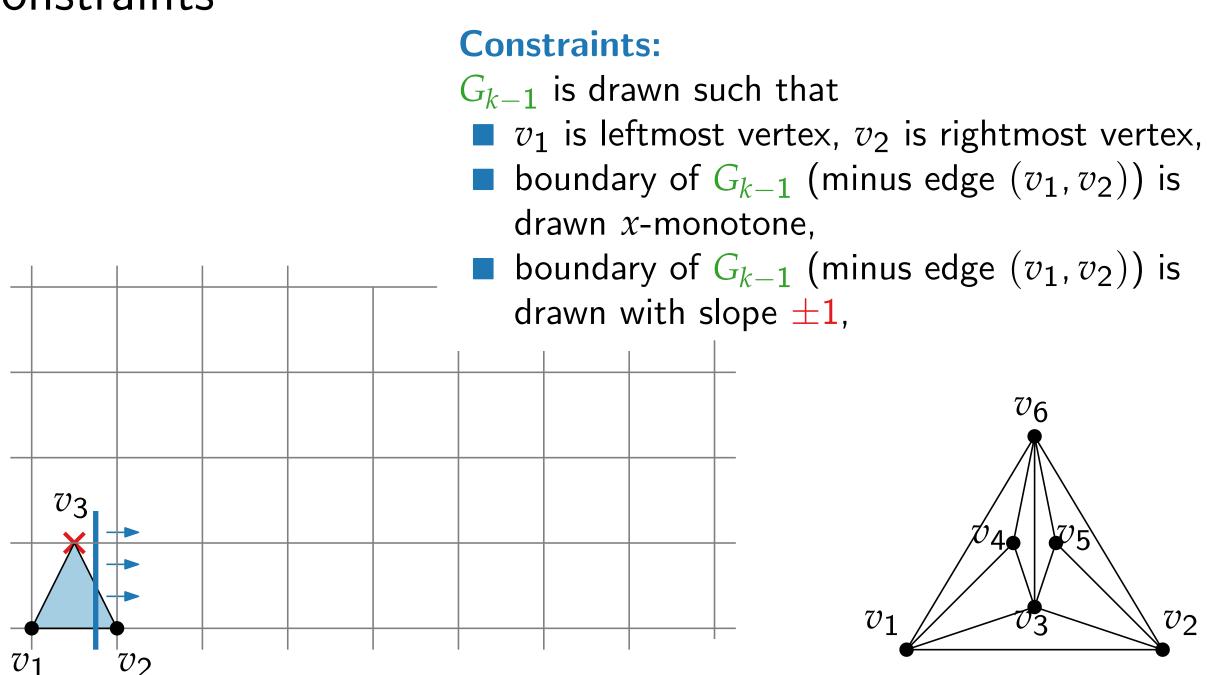
- control slopes
- additional shifting at each step

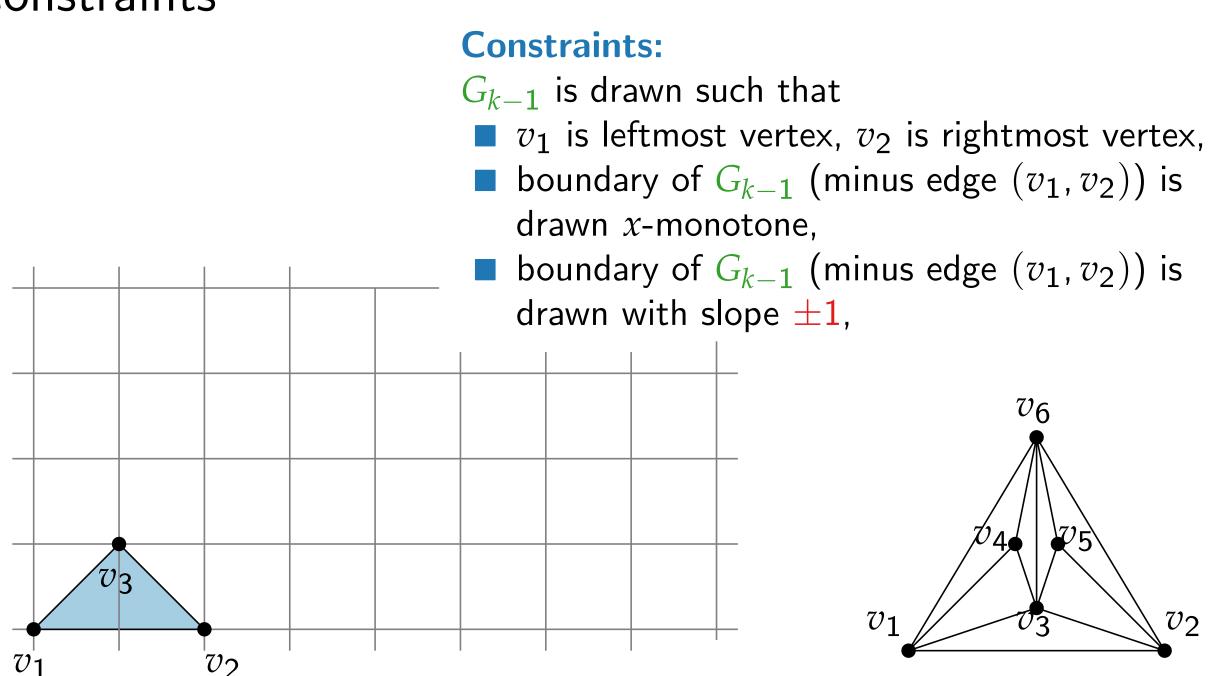
- G_{k-1} is drawn such that
- \bullet v_1 is leftmost vertex, v_2 is rightmost vertex,
- boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone,
- boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slope ± 1 ,

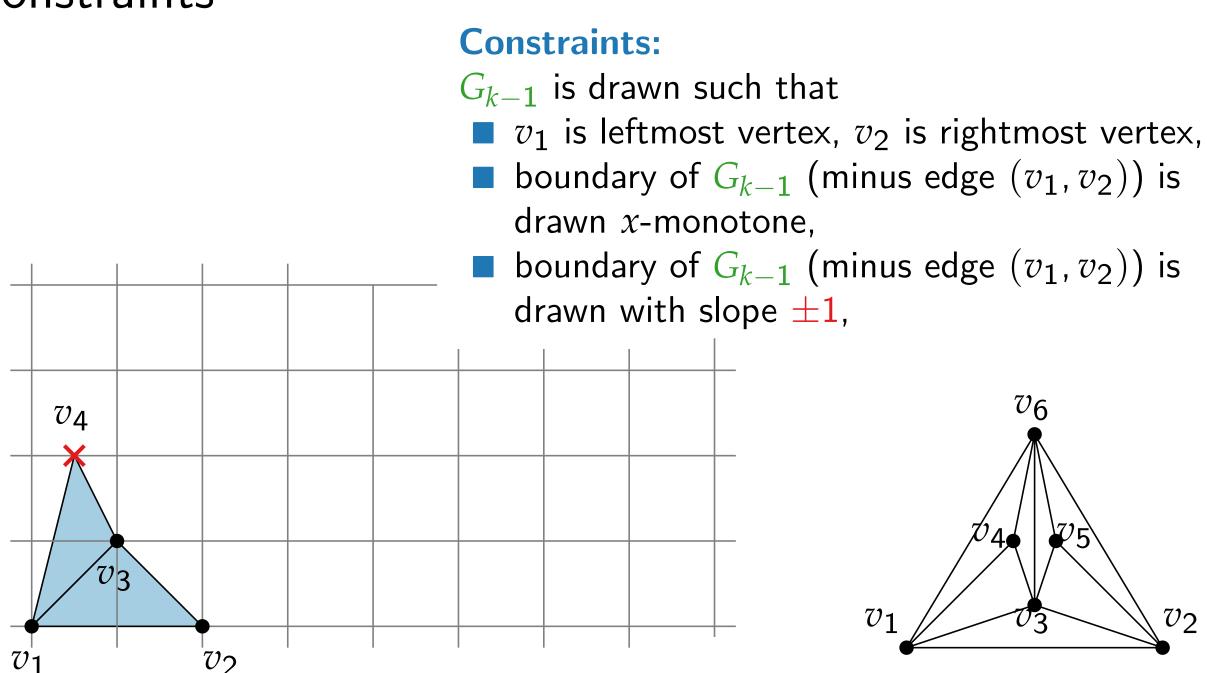


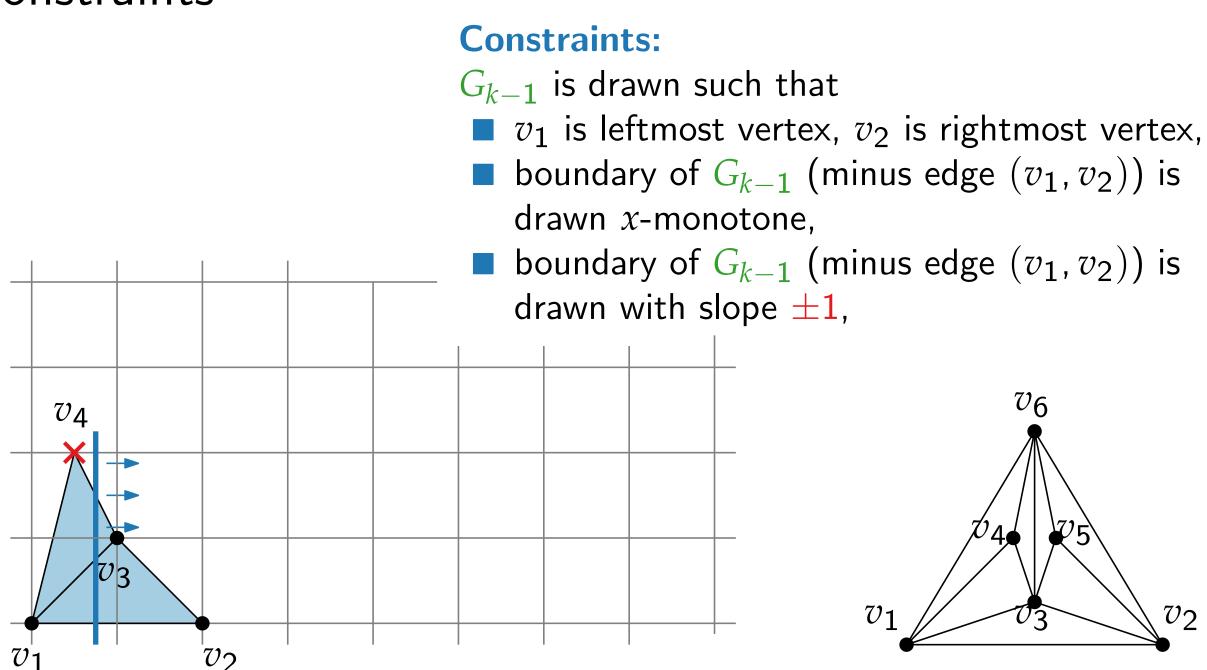


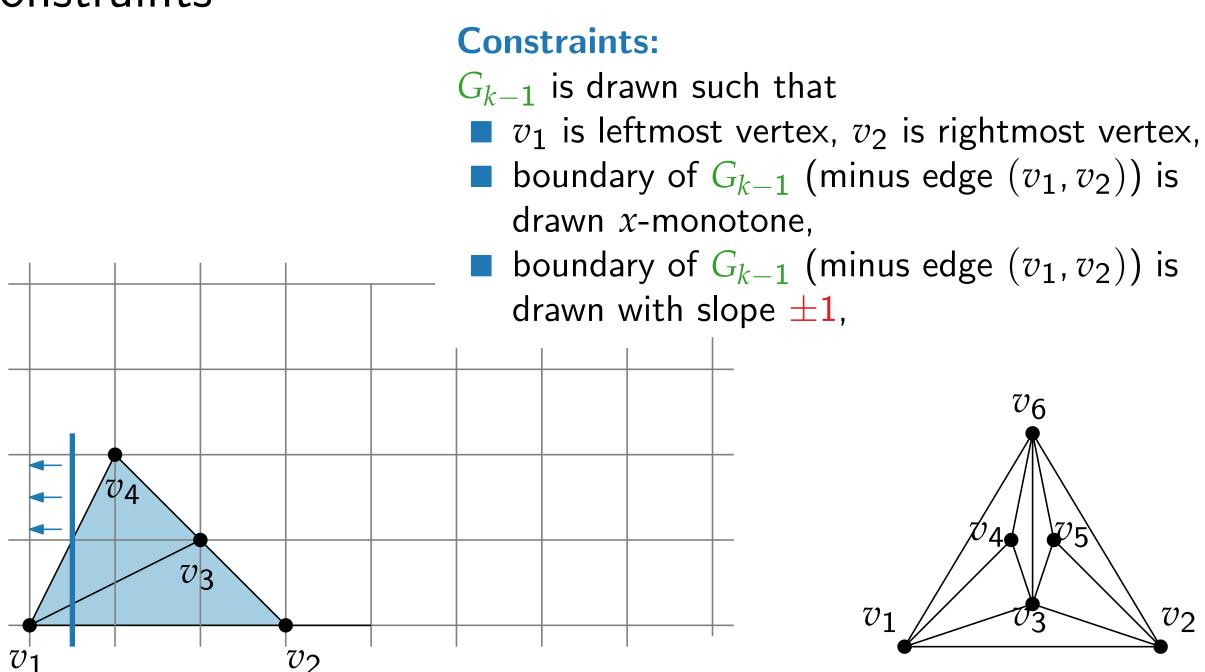


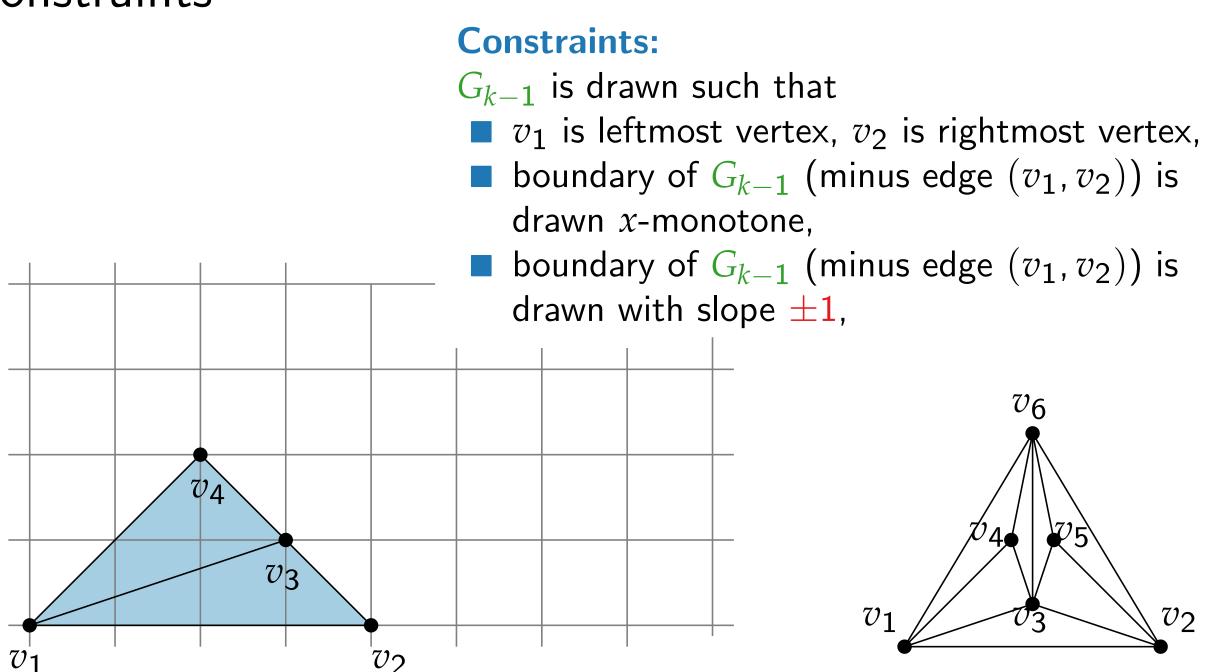


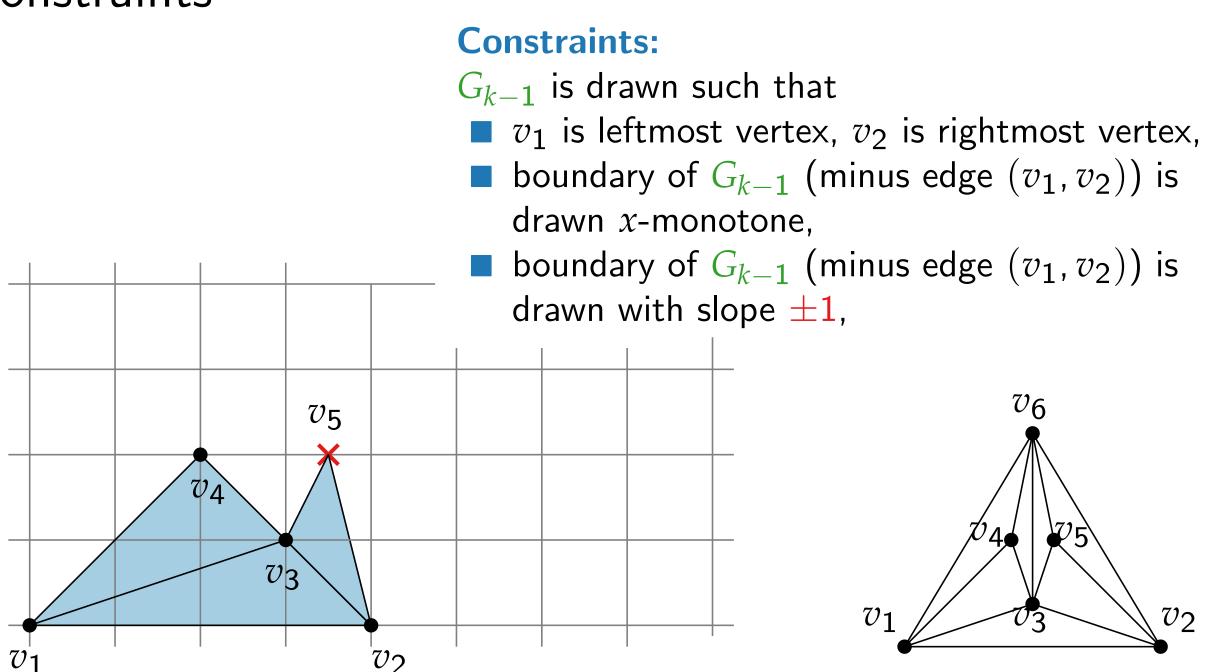


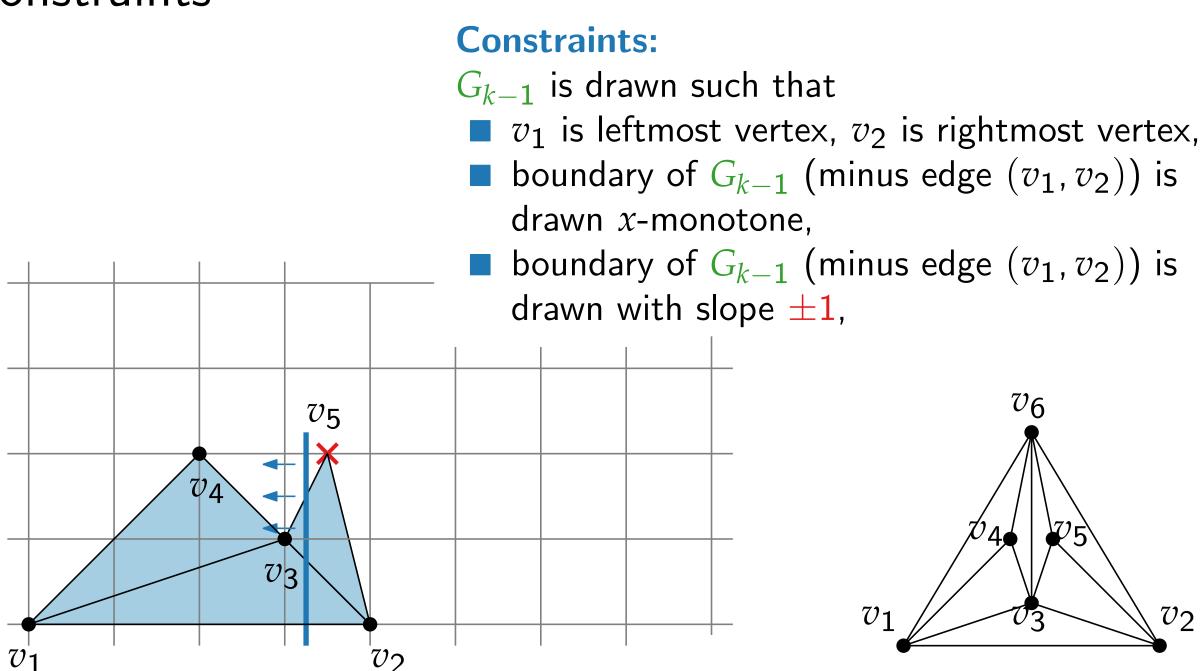


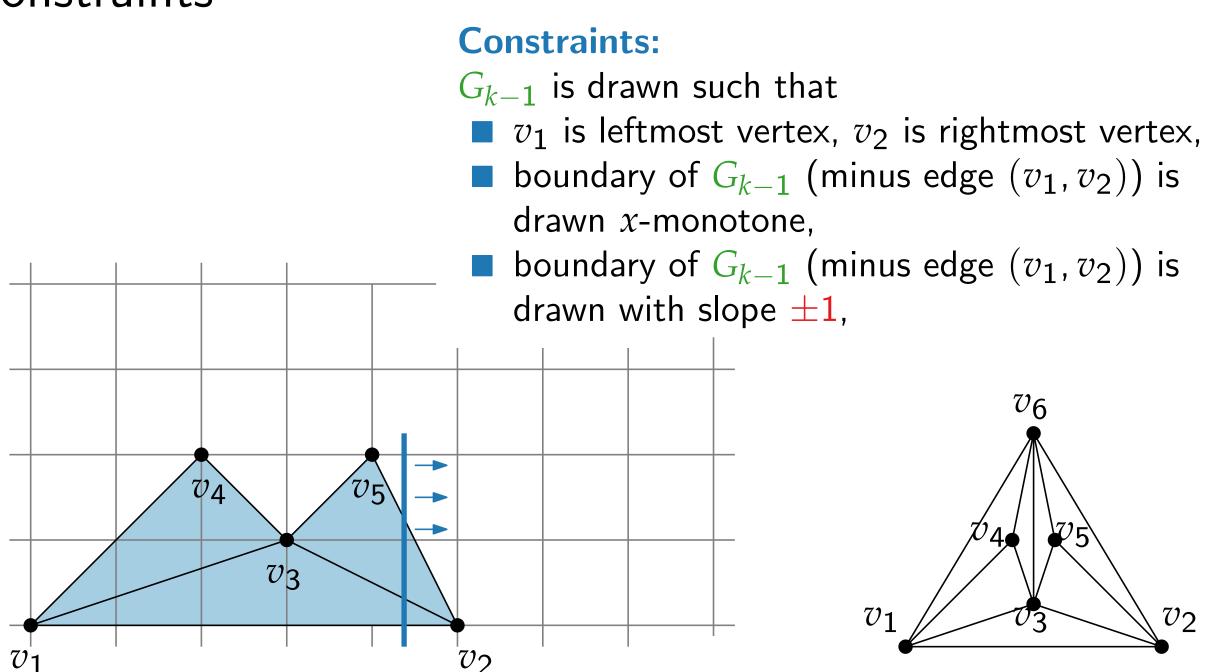


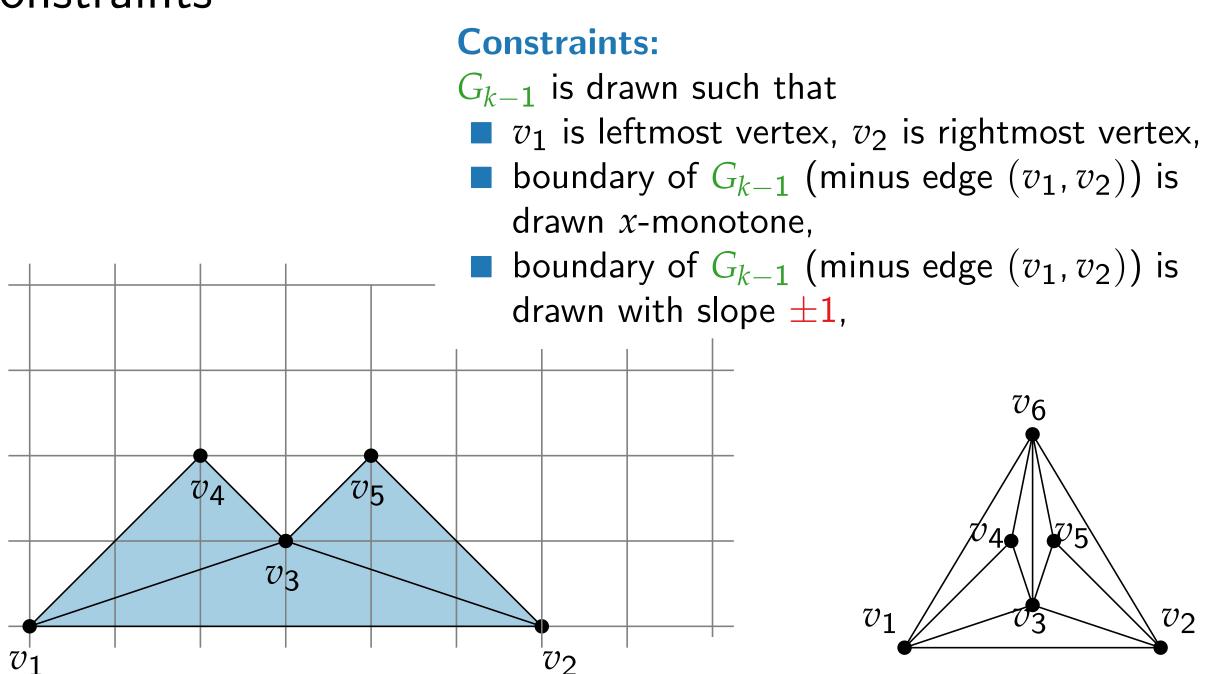


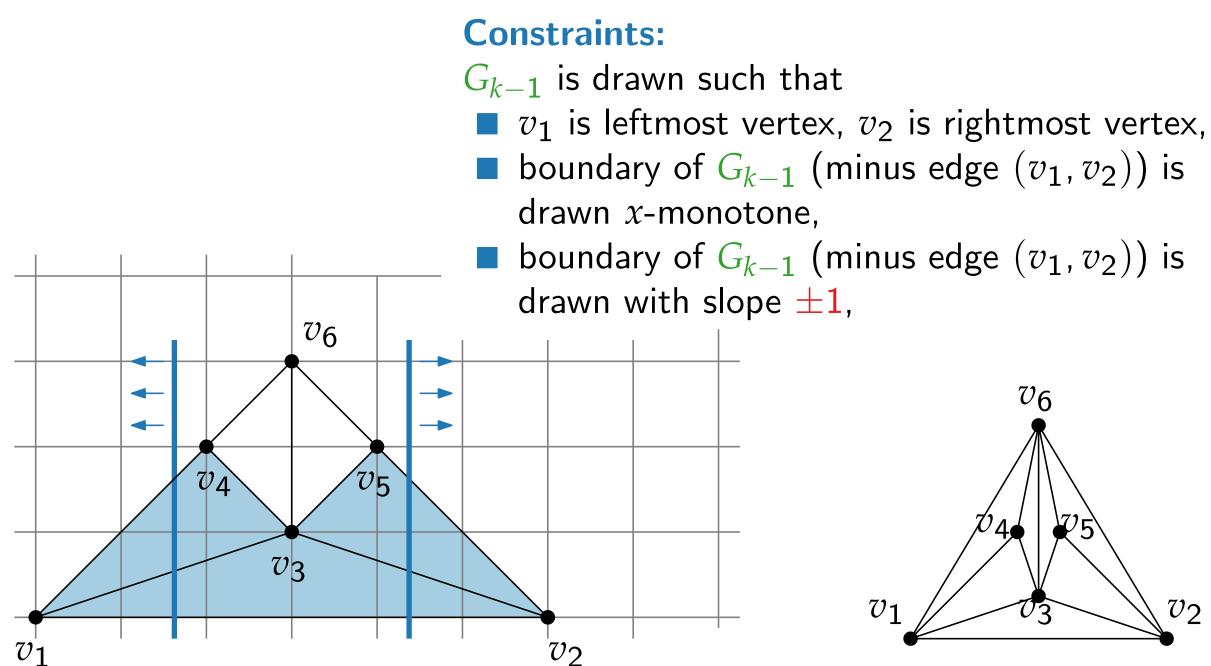


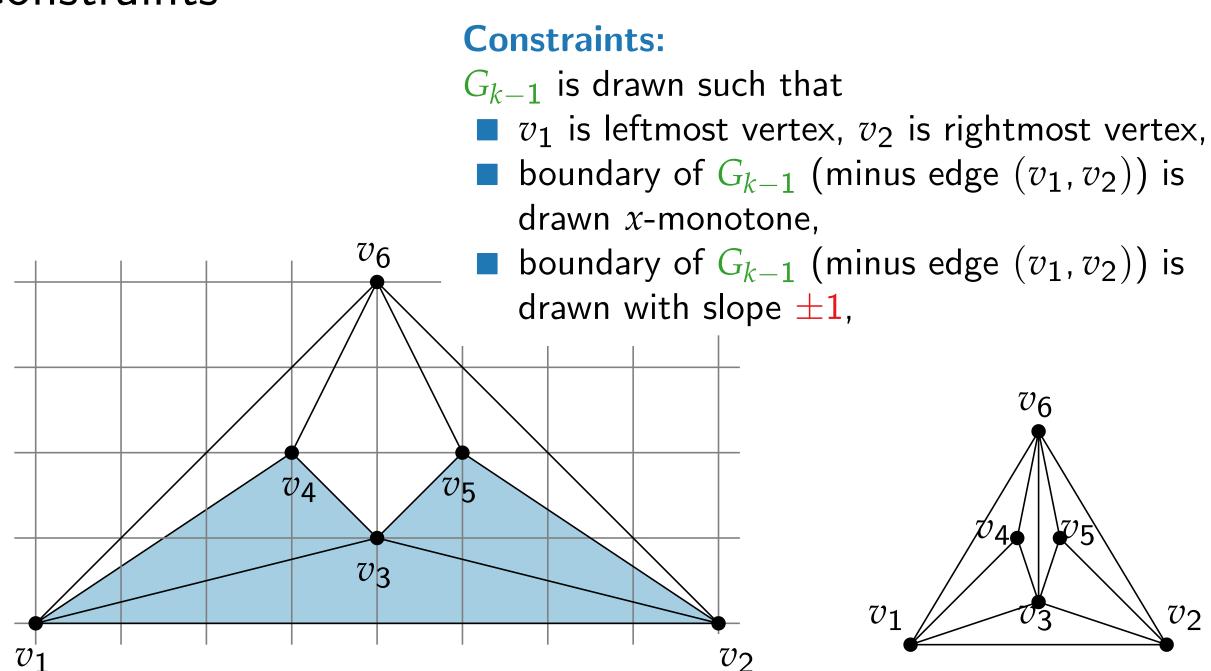












Remarks:

 \mathcal{U}^{-}

- width < 2n
- height < n

Constraints:

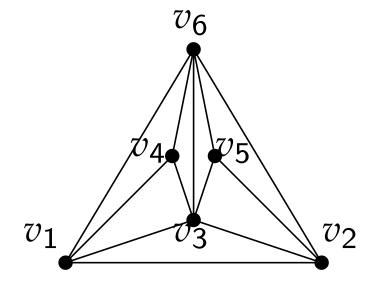
 v_6

 v_3

 v_5

 v_4

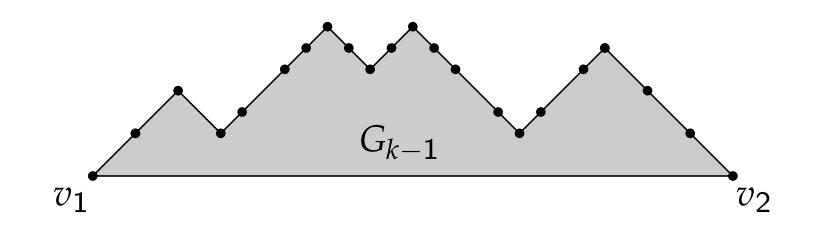
- G_{k-1} is drawn such that
- \bullet v_1 is leftmost vertex, v_2 is rightmost vertex,
 - boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn *x*-monotone,
 - boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slope ± 1 ,



Algorithm invariants/constraints:

 G_{k-1} is drawn such that

- v_1 is on (0,0), v_2 is on (2k 4, 0),
- boundary of G_{k-1} (minus edge (v₁, v₂)) is drawn x-monotone,
- each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ±1.



 v_1

Algorithm invariants/constraints:

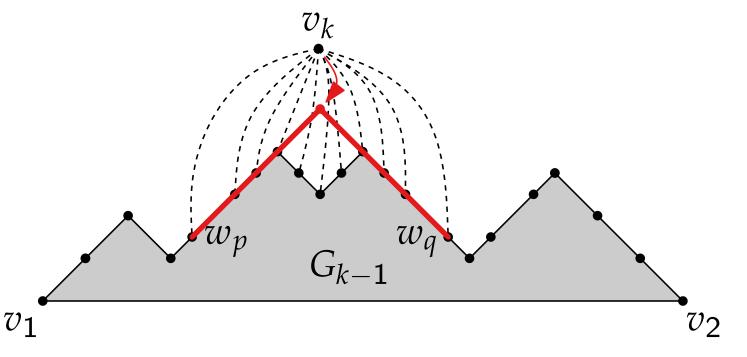
 G_{k-1} is drawn such that

 \mathcal{U}_{l}

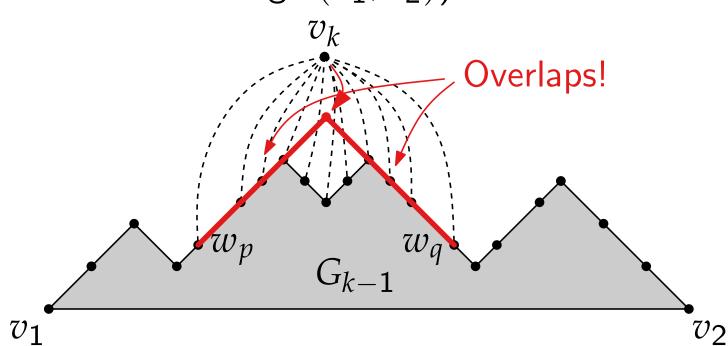
- v_1 is on (0,0), v_2 is on (2k 4, 0),
- boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn *x*-monotone,
- each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ±1.

Algorithm invariants/constraints:

- G_{k-1} is drawn such that
- v_1 is on (0,0), v_2 is on (2k 4, 0),
- boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn *x*-monotone,
- each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ±1.



- G_{k-1} is drawn such that
- v_1 is on (0,0), v_2 is on (2k 4, 0),
- boundary of G_{k-1} (minus edge (v₁, v₂)) is drawn x-monotone,
- each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ±1.



 \mathcal{U}_1

 \mathcal{U}_{l}

- v_1 is on (0,0), v_2 is on (2k 4, 0),
- boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn *x*-monotone,
- each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1 .

Overlaps!

What is the solution?

 \mathcal{U}_1

 G_{k-1} is drawn such that

 \mathcal{U}_l

 G_{k-1}

- v_1 is on (0,0), v_2 is on (2k 4, 0),
- boundary of G_{k-1} (minus edge (v₁, v₂)) is drawn x-monotone,
- each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1 .

 \mathcal{U}_1

 G_{k-1} is drawn such that

 \mathcal{U}_l

 G_{k-1}

- v_1 is on (0,0), v_2 is on (2k-4,0),
- boundary of G_{k-1} (minus edge (v₁, v₂)) is drawn x-monotone,
- each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1 .

 \mathcal{U}_1

 G_{k-1} is drawn such that

 \mathcal{U}_l

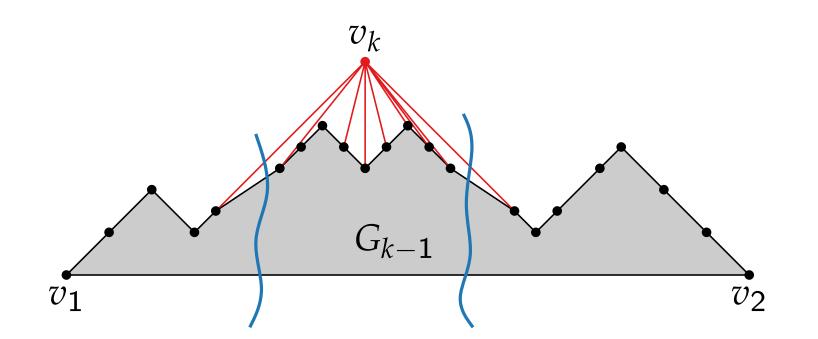
 \mathcal{W}

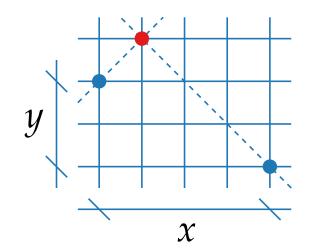
 G_{k-1}

- v_1 is on (0,0), v_2 is on (2k-4,0),
- boundary of G_{k-1} (minus edge (v₁, v₂)) is drawn x-monotone,
- each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1 .

Algorithm invariants/constraints:

- G_{k-1} is drawn such that
- v_1 is on (0,0), v_2 is on (2k 4, 0),
- boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn *x*-monotone,
- each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ±1.



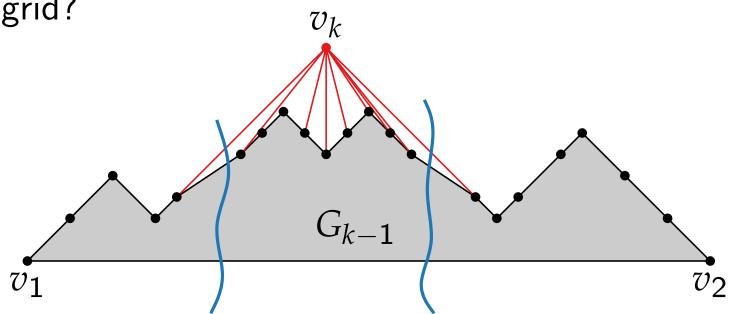


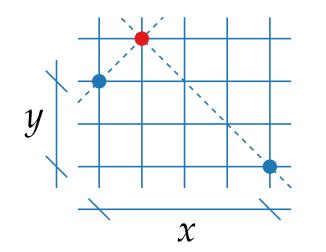
• Why is v_k on grid?

Algorithm invariants/constraints:

 G_{k-1} is drawn such that

- v_1 is on (0,0), v_2 is on (2k 4, 0),
- boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn *x*-monotone,
- each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ±1.



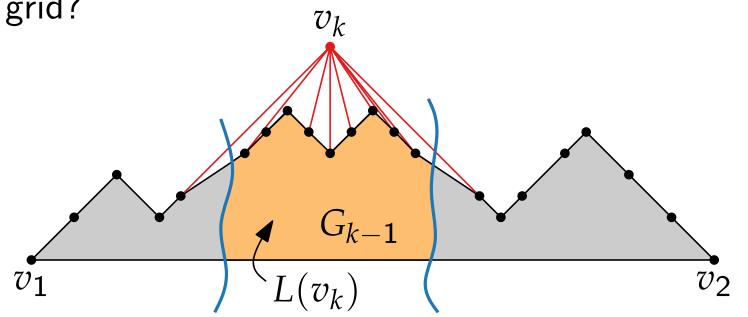


• Why is v_k on grid?

Algorithm invariants/constraints:

 G_{k-1} is drawn such that

- v_1 is on (0,0), v_2 is on (2k 4, 0),
- boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn *x*-monotone,
- each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ±1.



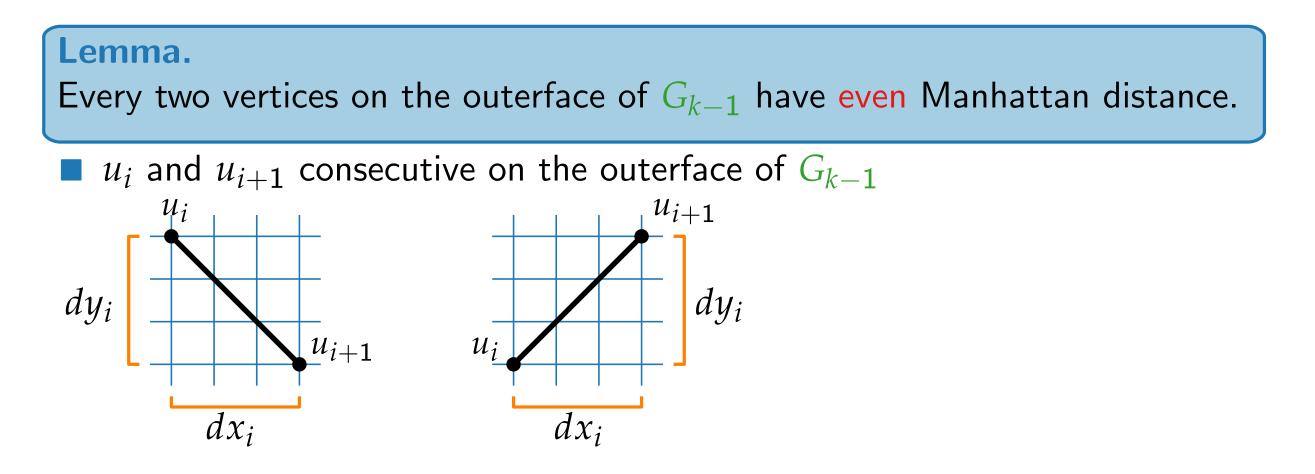
Lemma.

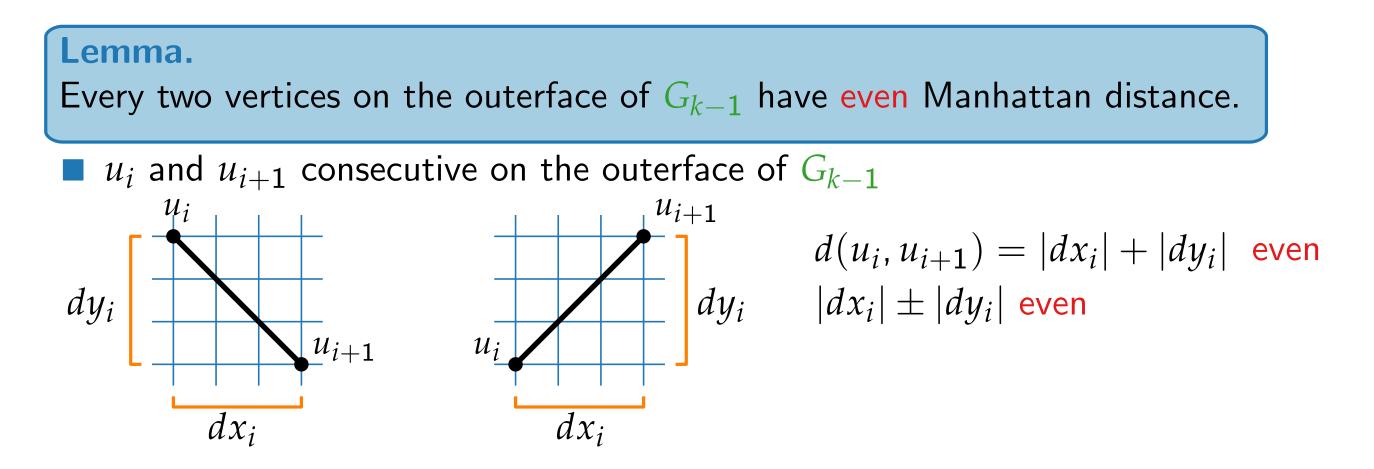
Every two vertices on the outerface of G_{k-1} have even Manhattan distance.

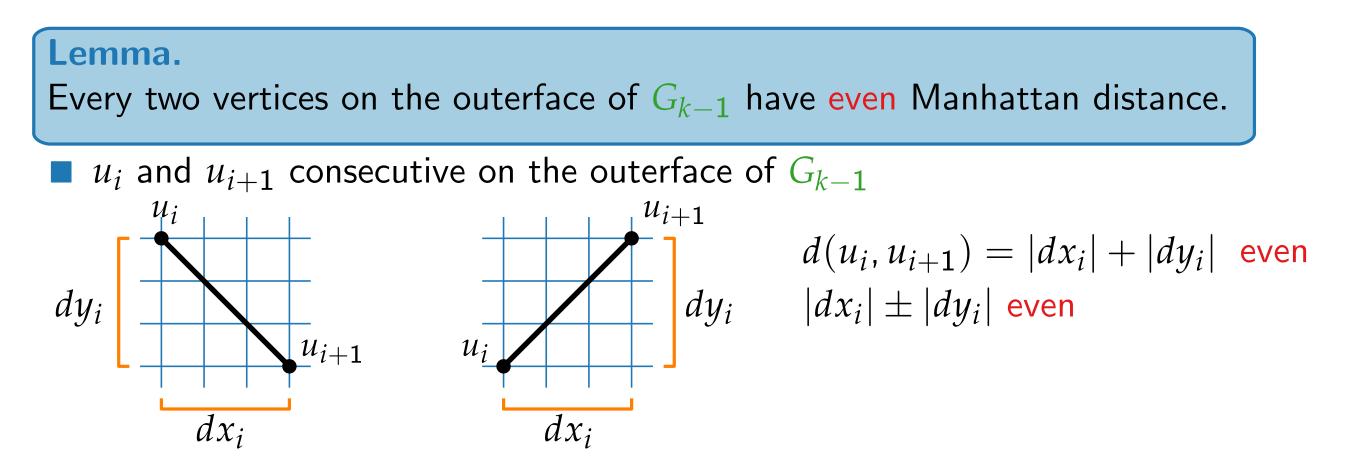
Lemma.

Every two vertices on the outerface of G_{k-1} have even Manhattan distance.

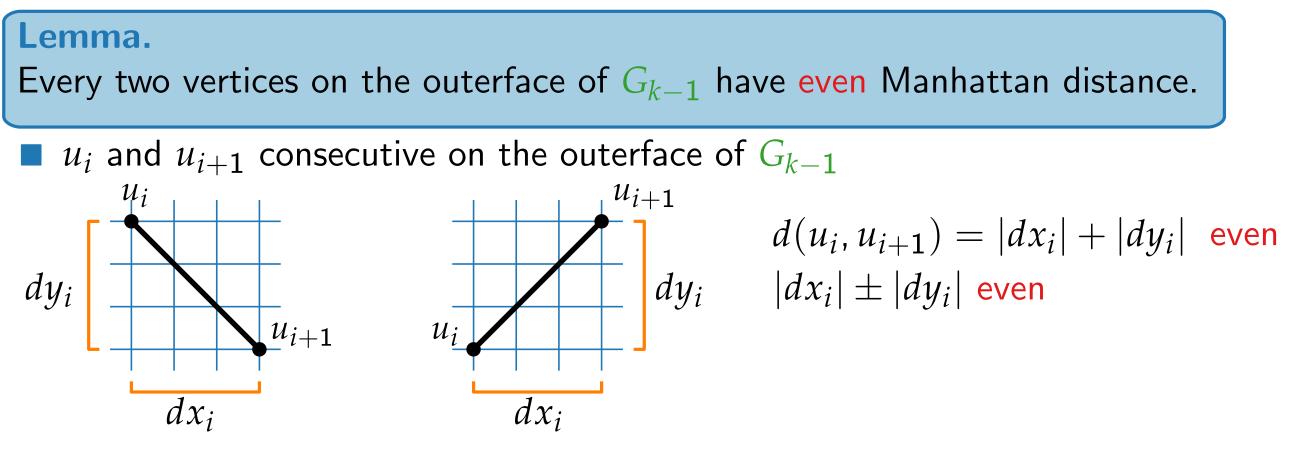
 \blacksquare u_i and u_{i+1} consecutive on the outerface of G_{k-1}



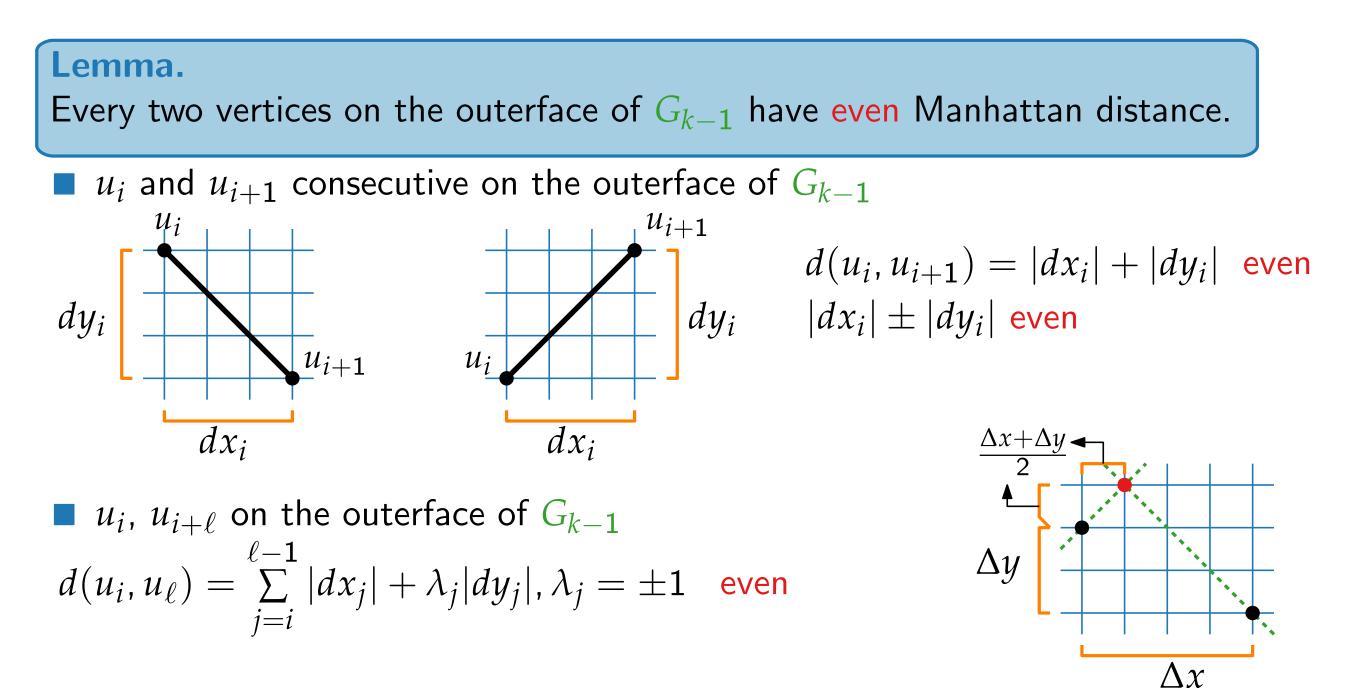


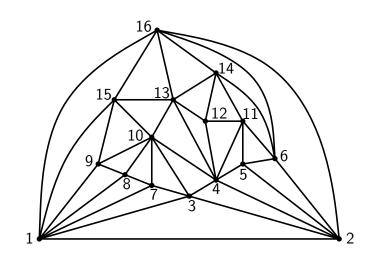


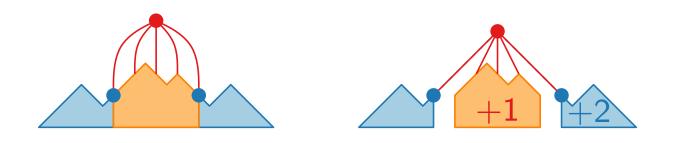
 \blacksquare u_i , $u_{i+\ell}$ on the outerface of G_{k-1}

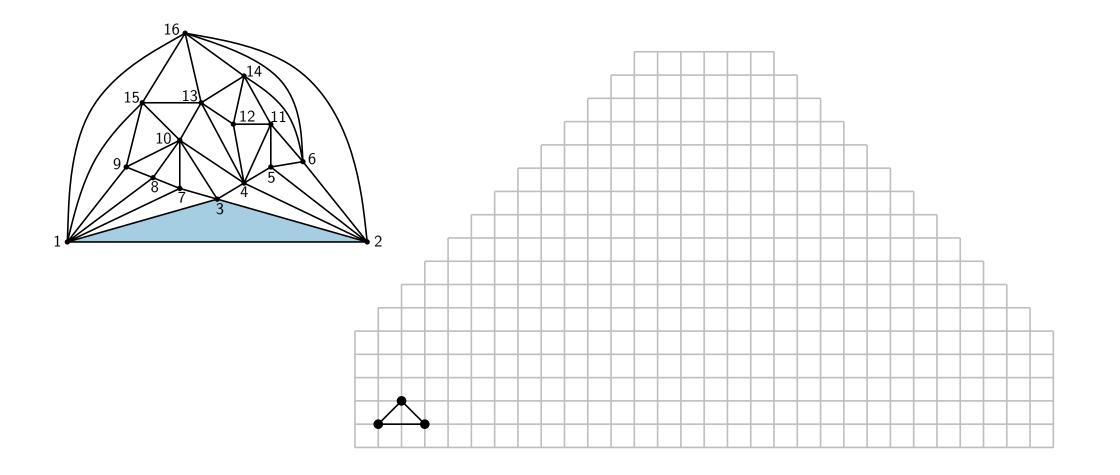


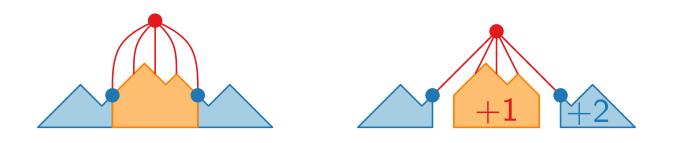
•
$$u_i, u_{i+\ell}$$
 on the outerface of G_{k-1}
 $d(u_i, u_\ell) = \sum_{j=i}^{\ell-1} |dx_j| + \lambda_j |dy_j|, \lambda_j = \pm 1$ even

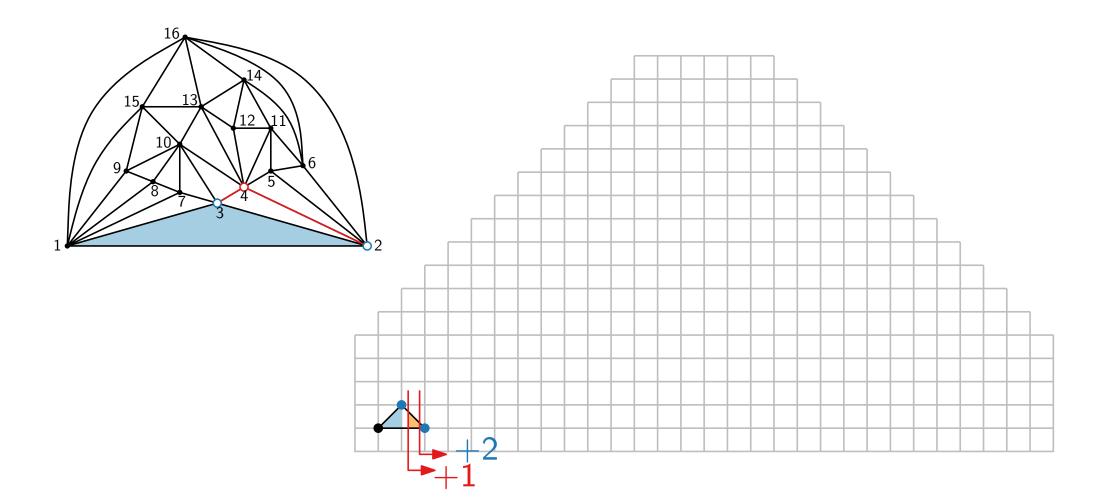


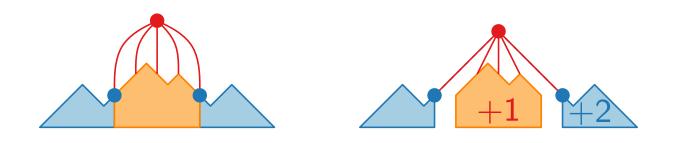


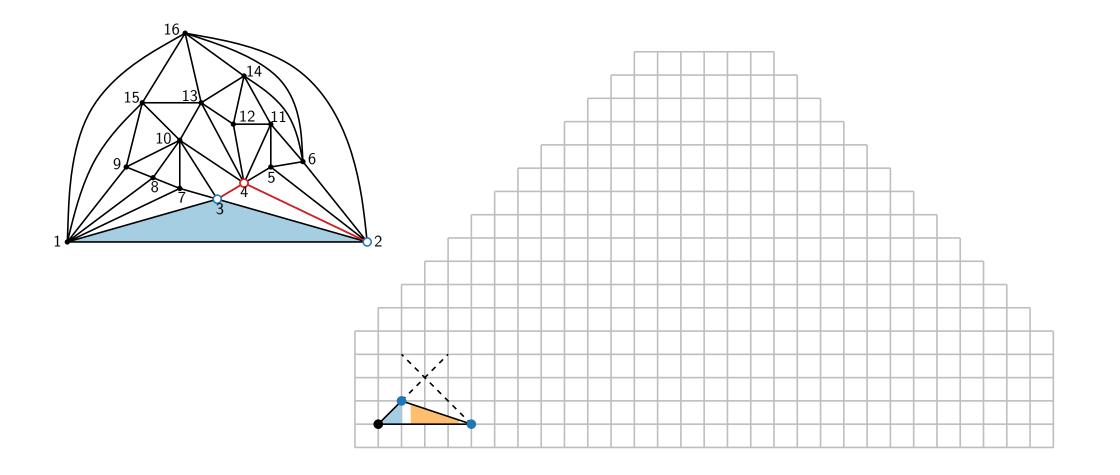


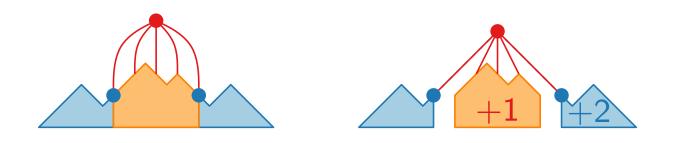


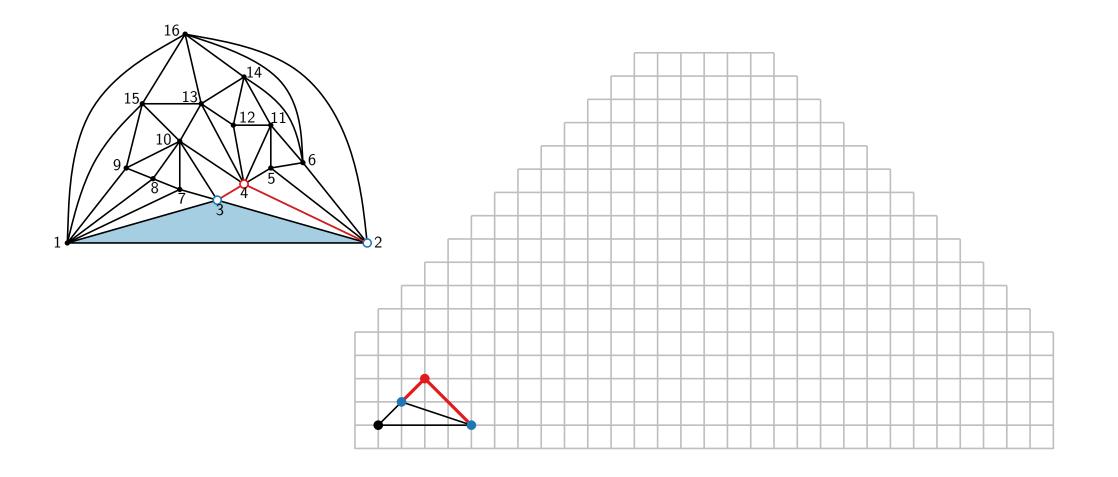


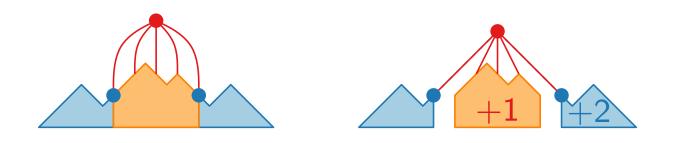


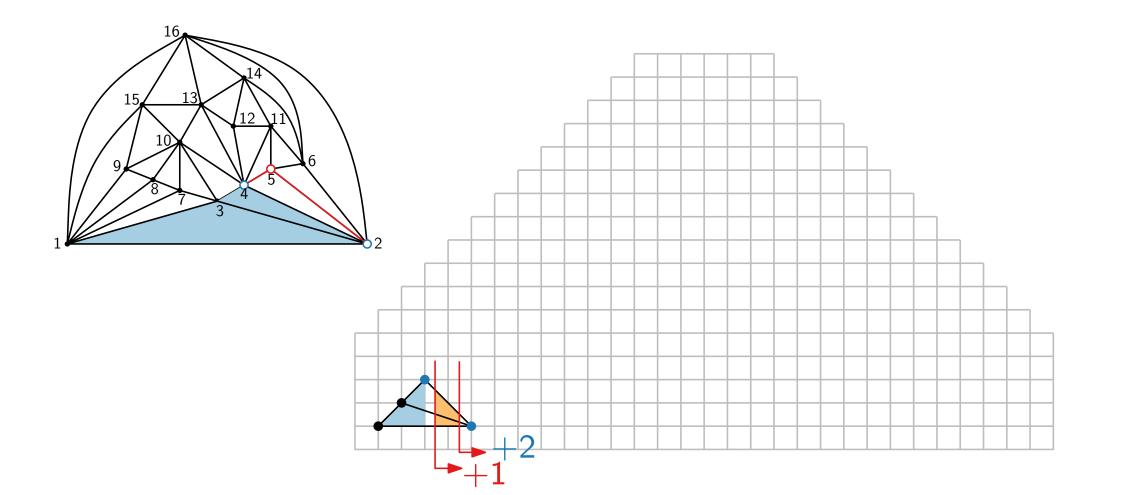


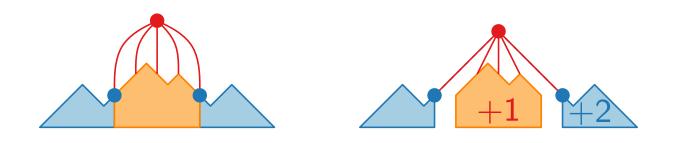


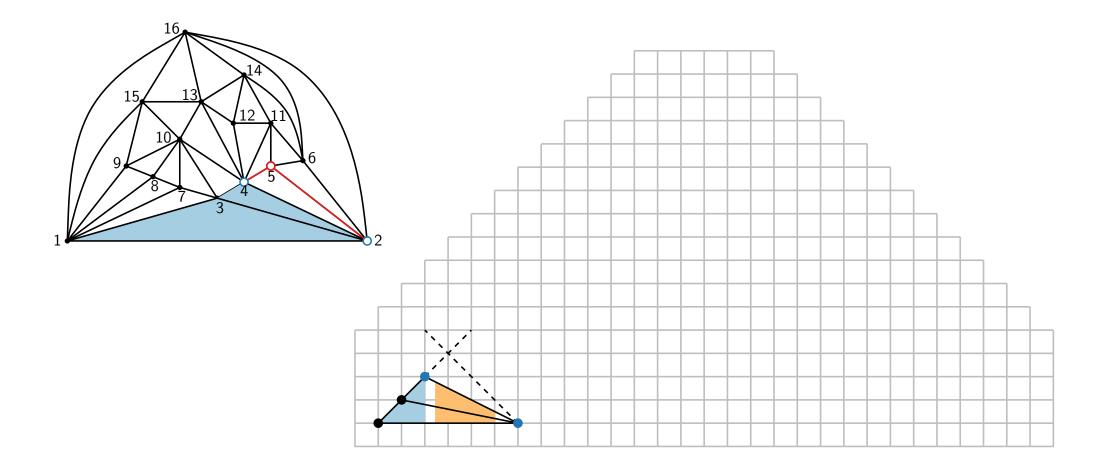


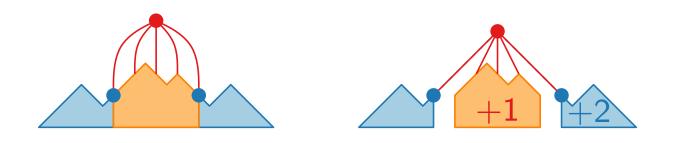


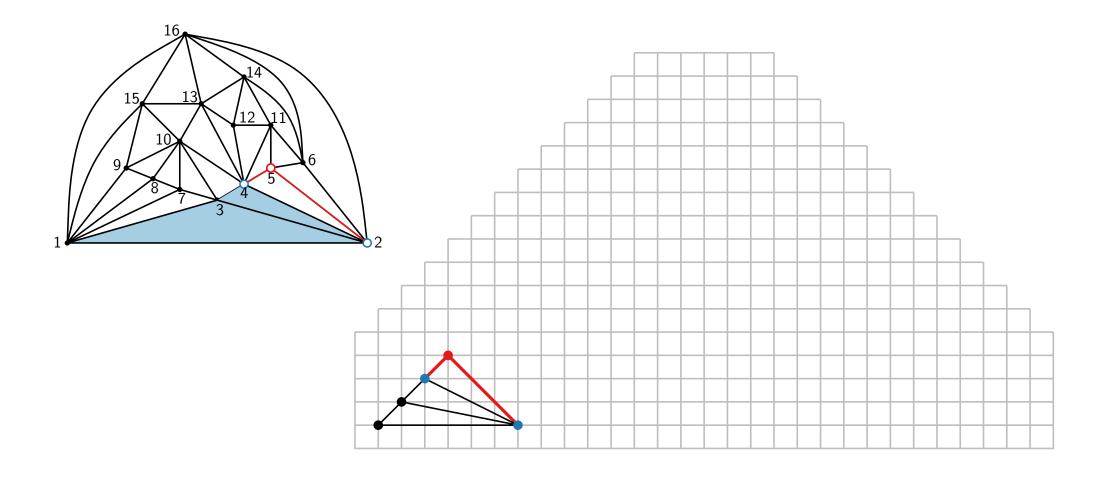


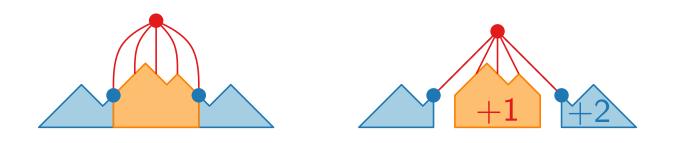


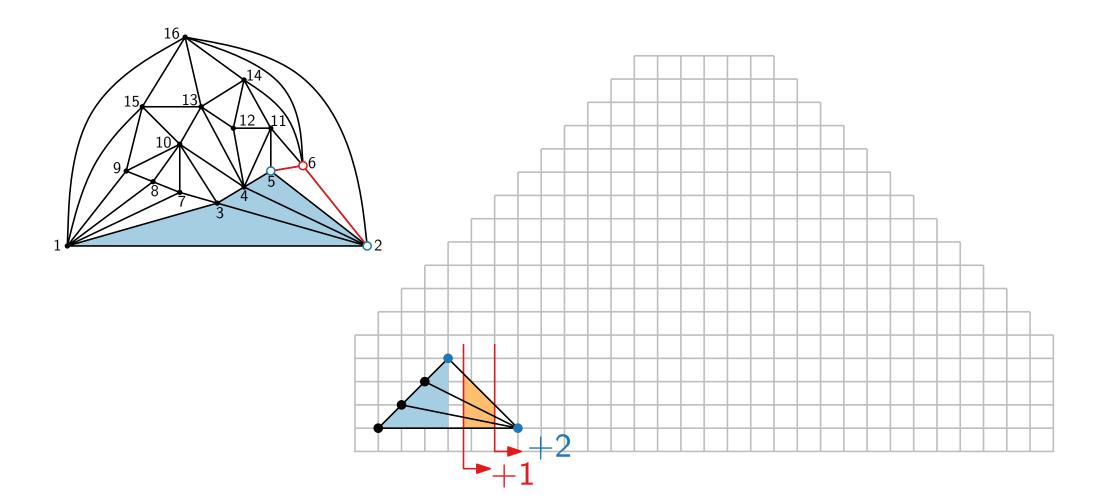


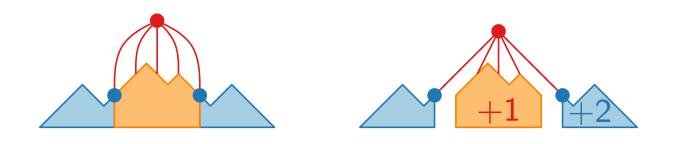


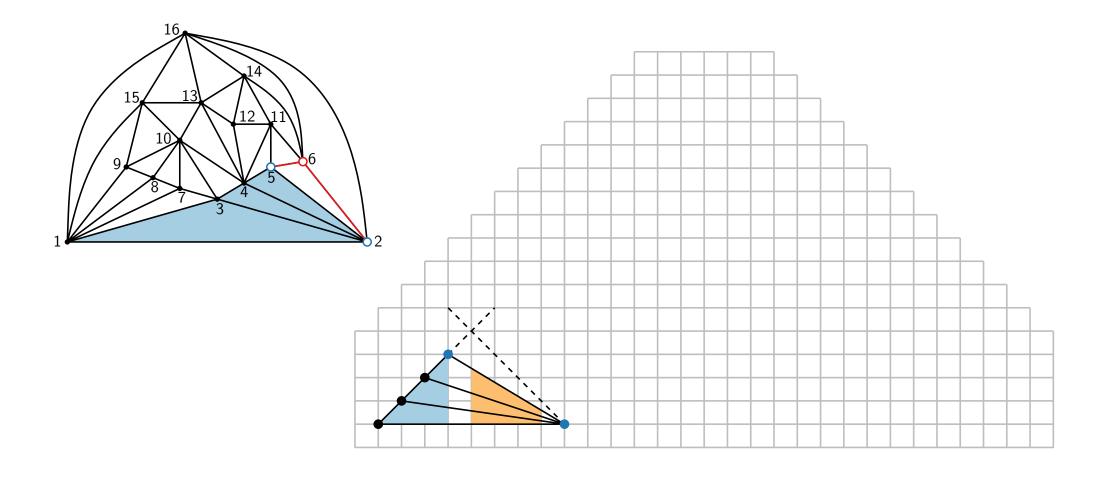


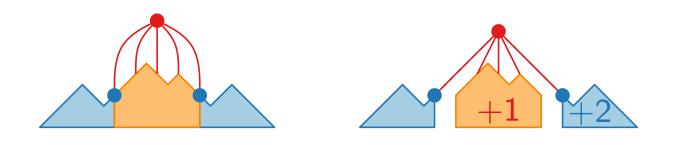


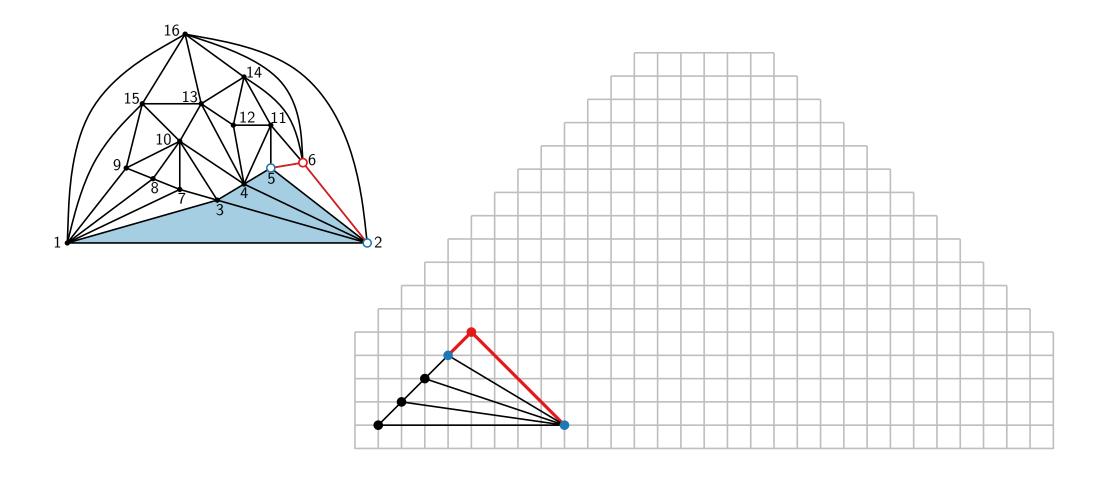


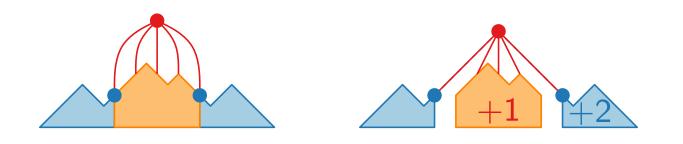


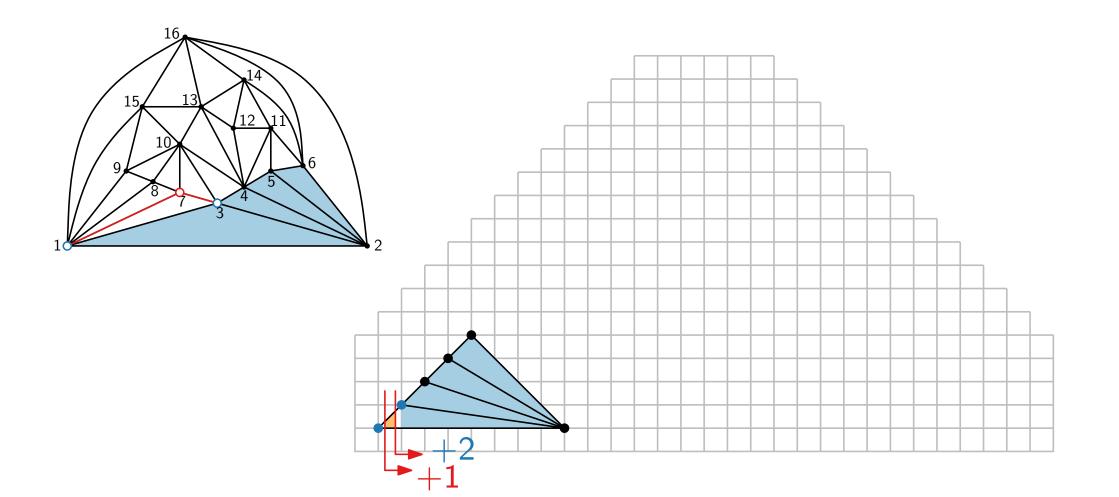


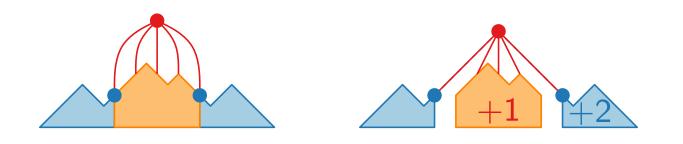


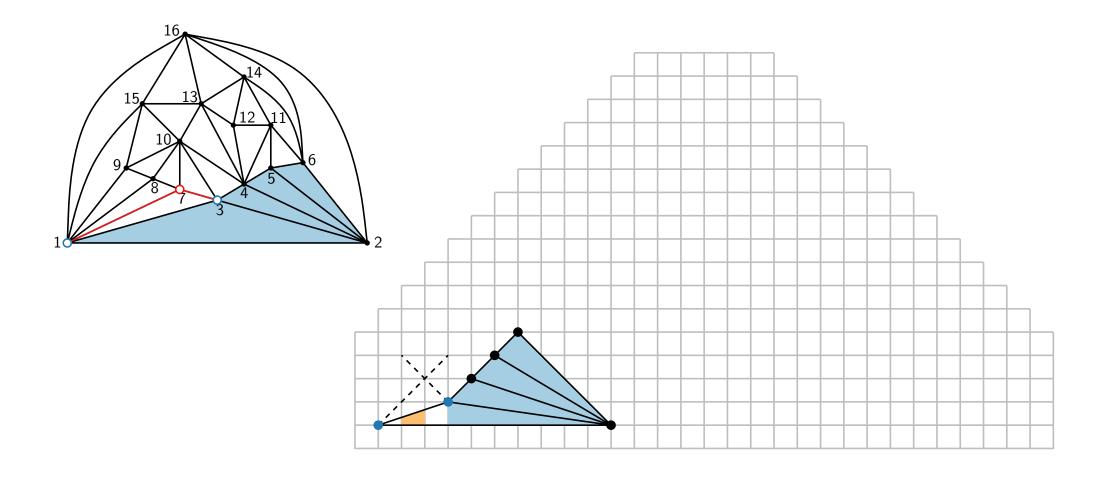


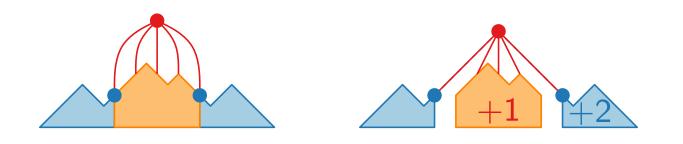


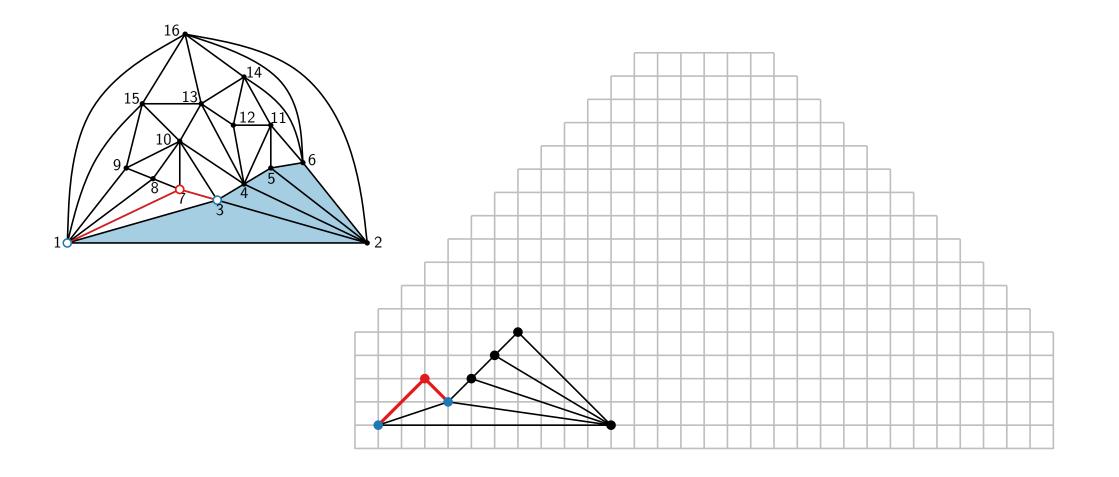


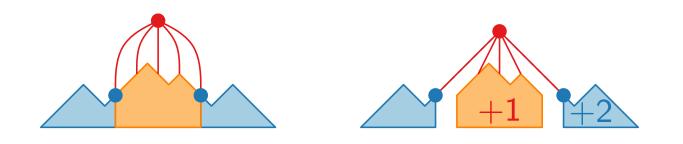


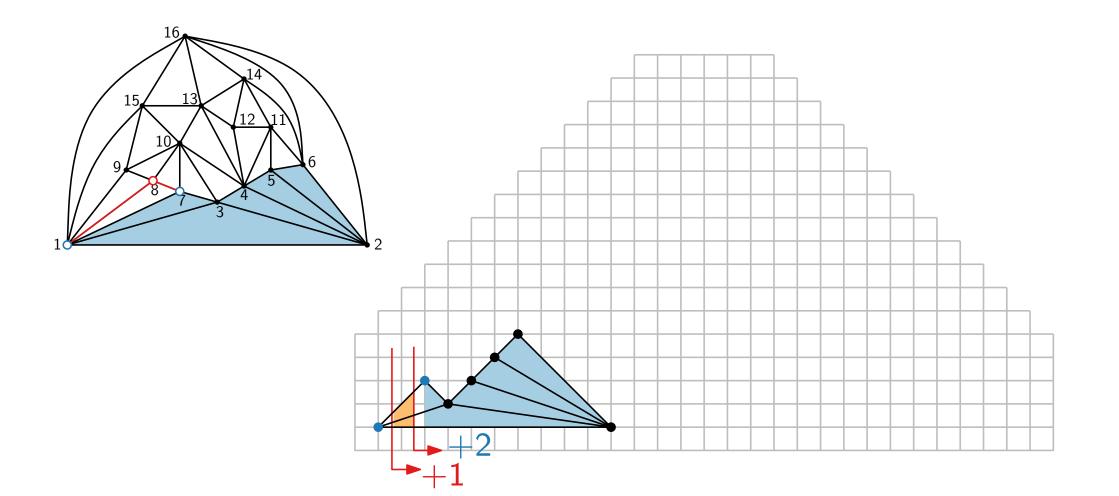


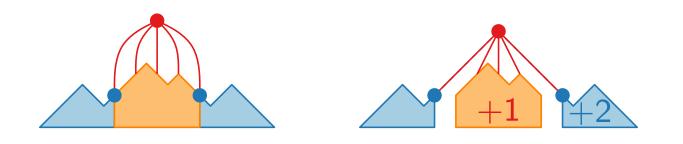


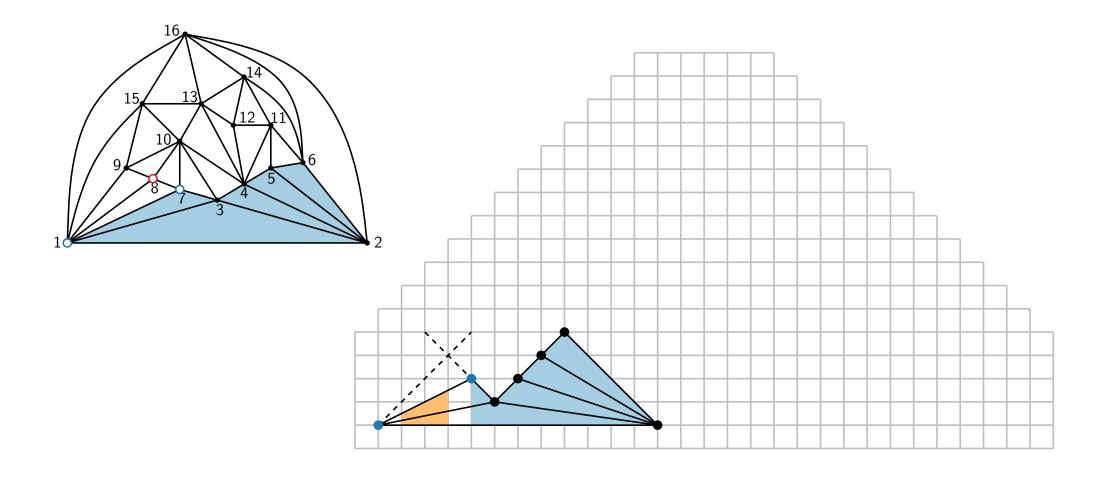


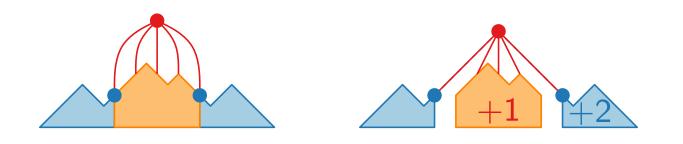


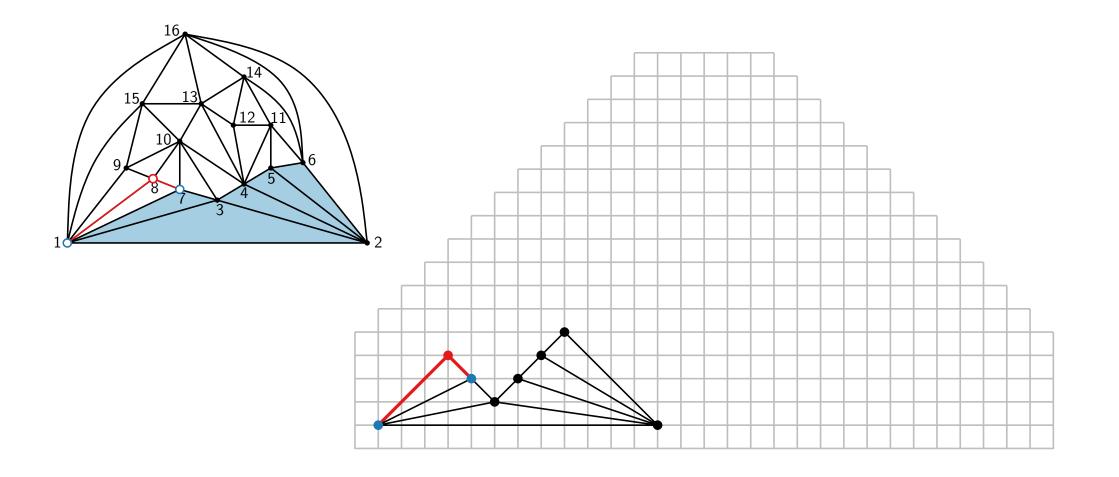


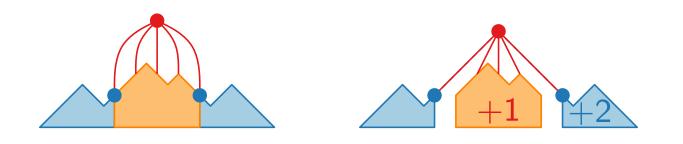


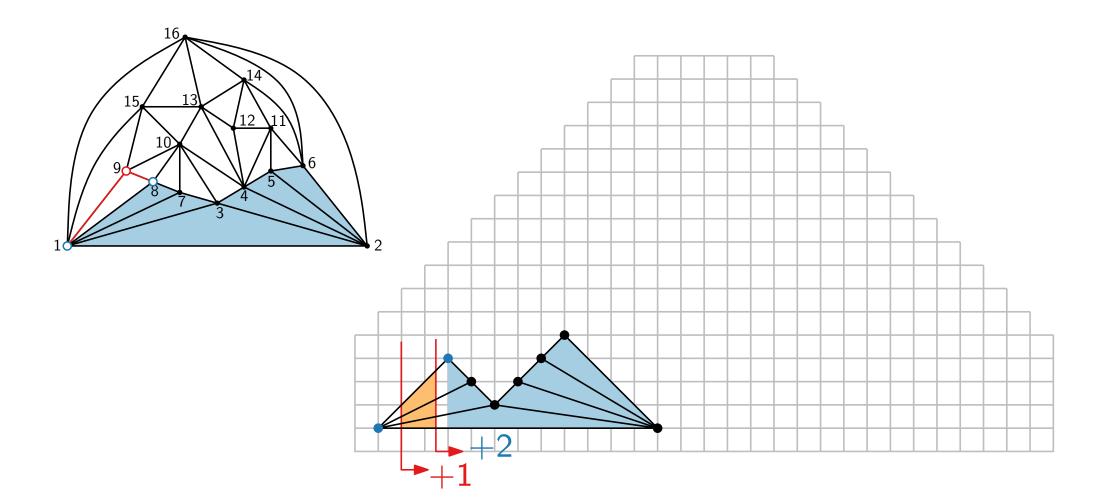


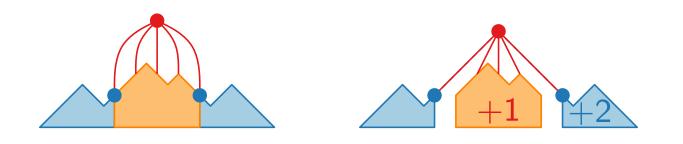


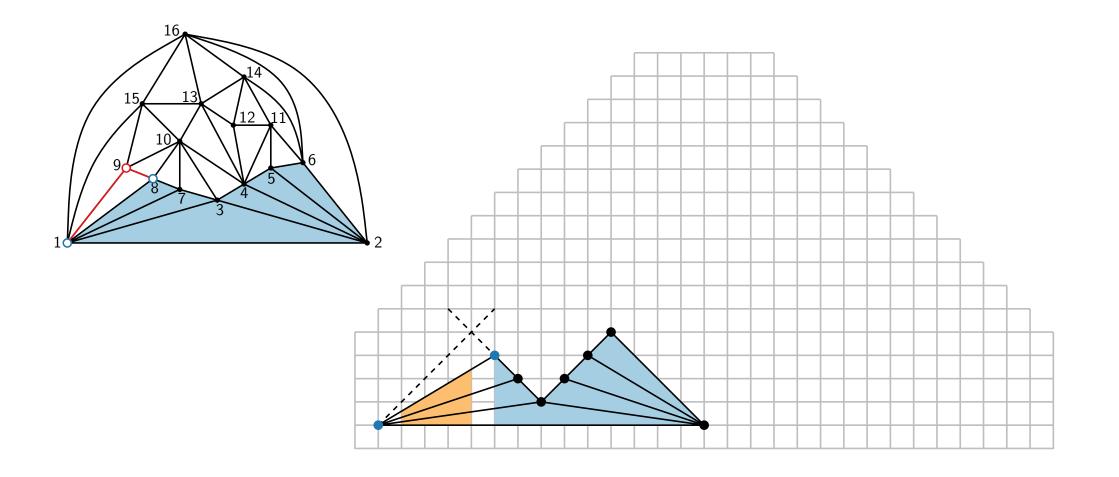


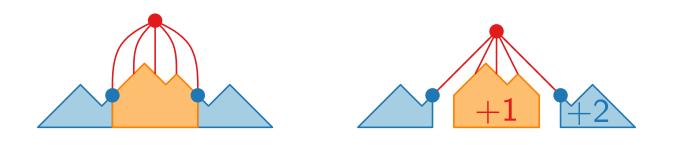


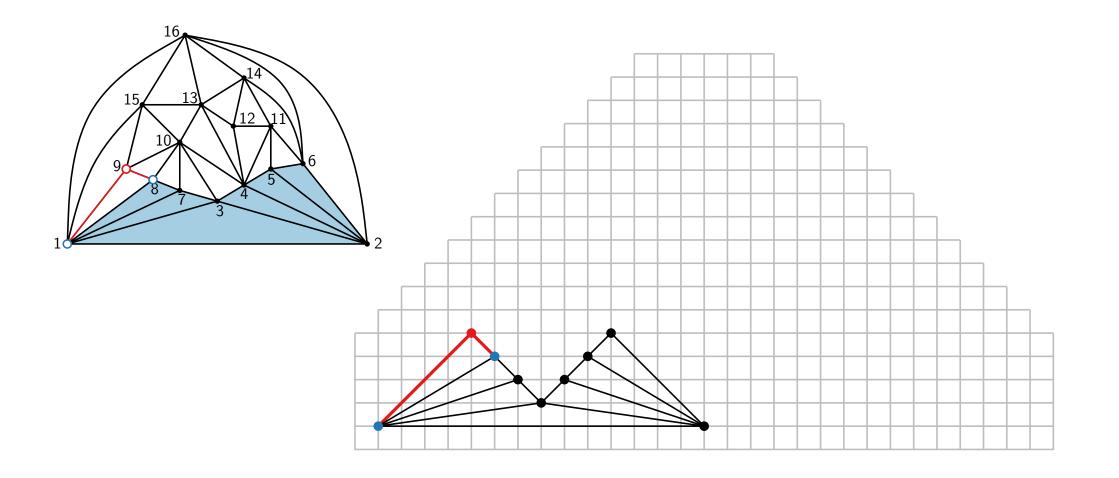


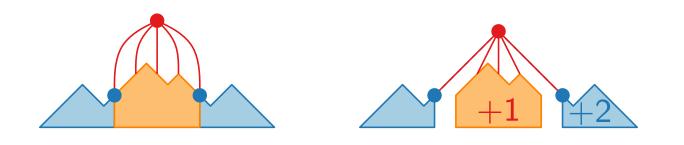


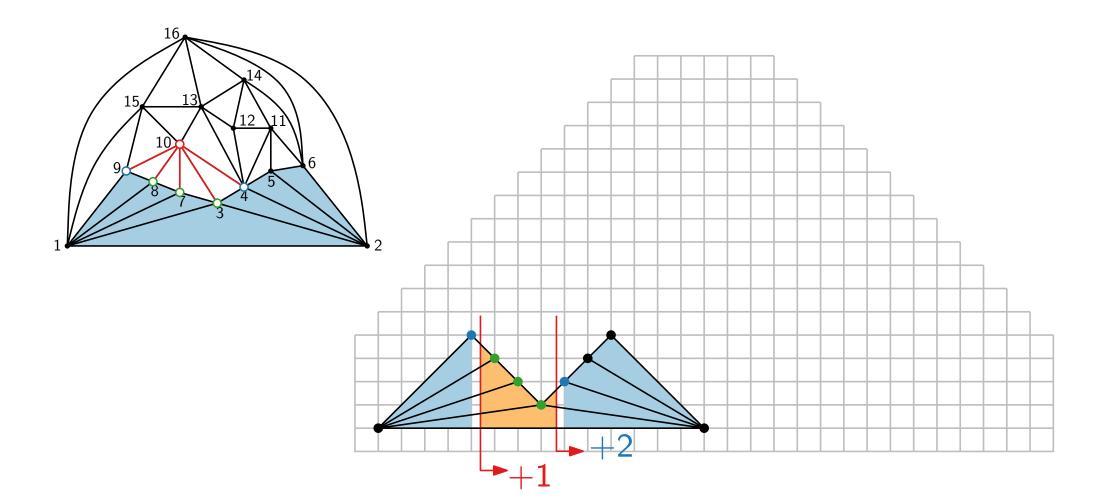


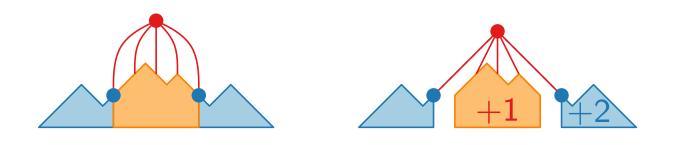


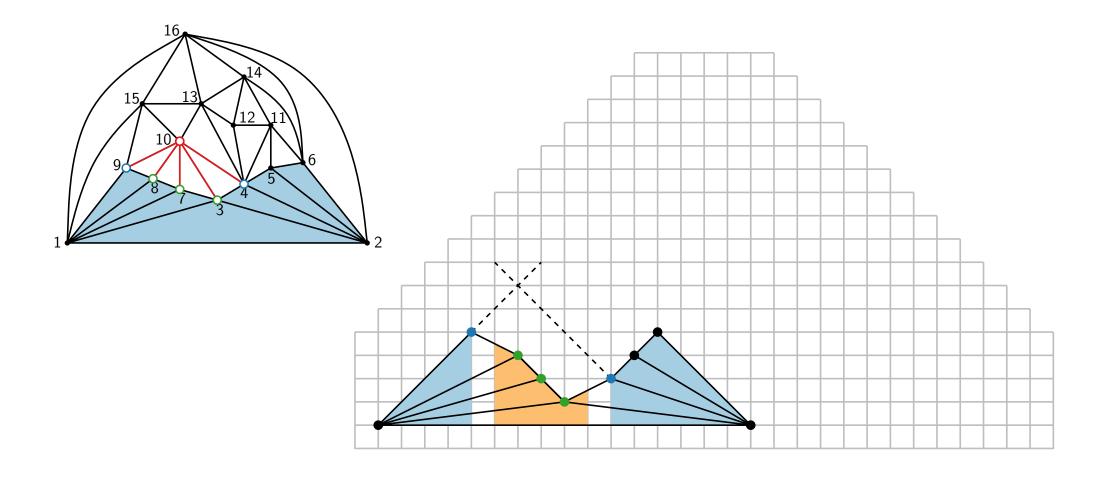


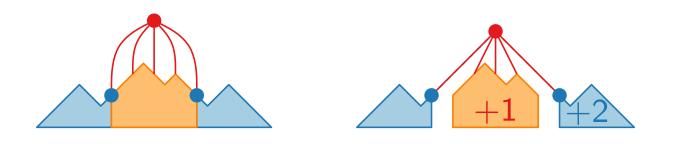


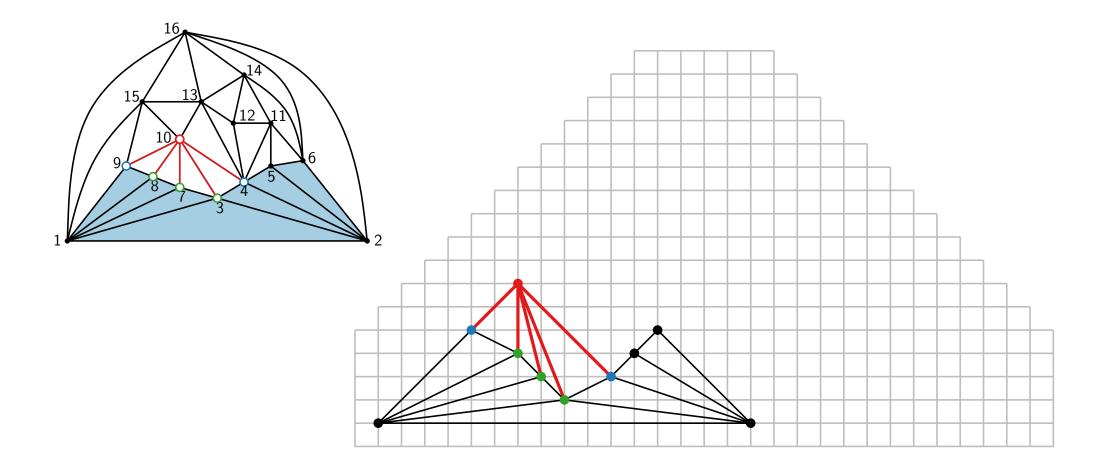


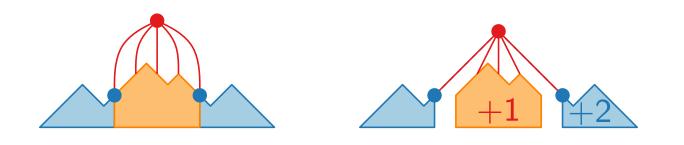


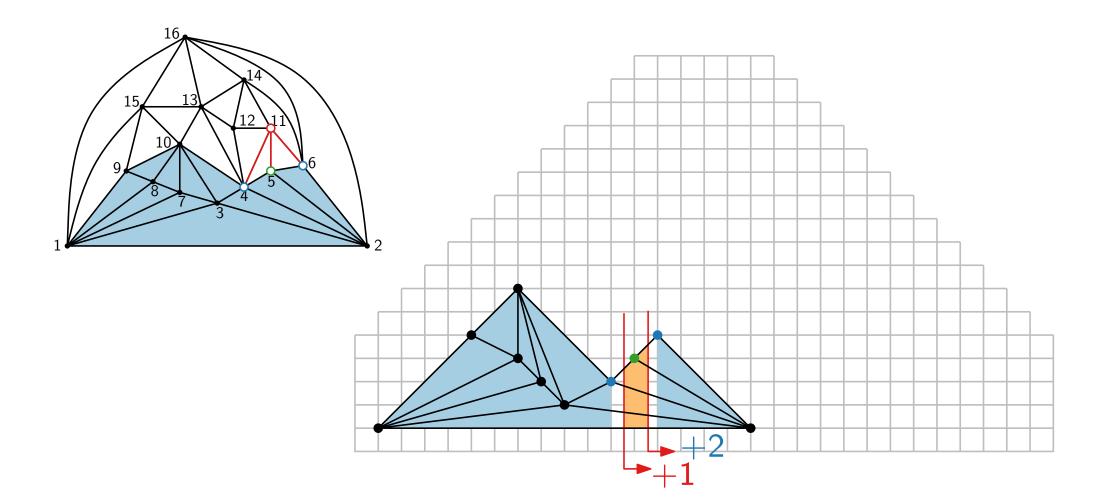


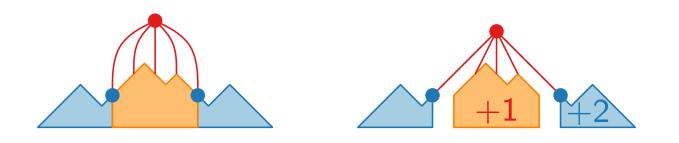


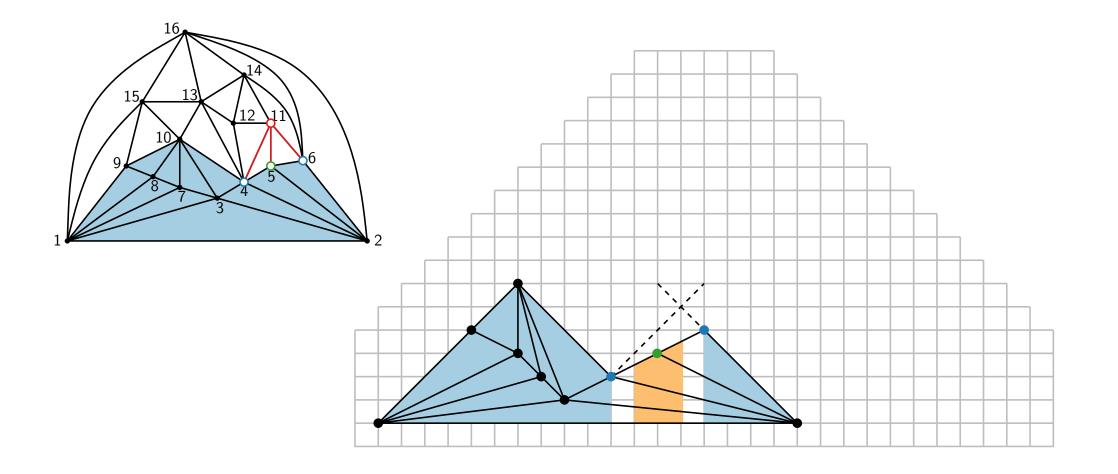


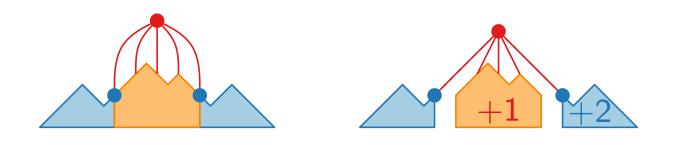


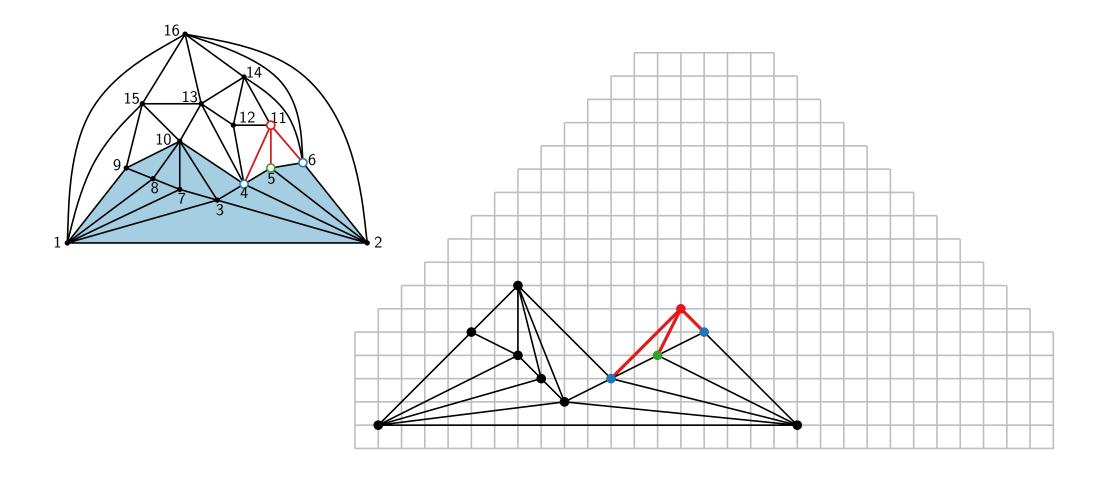


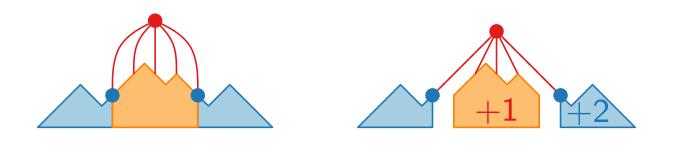


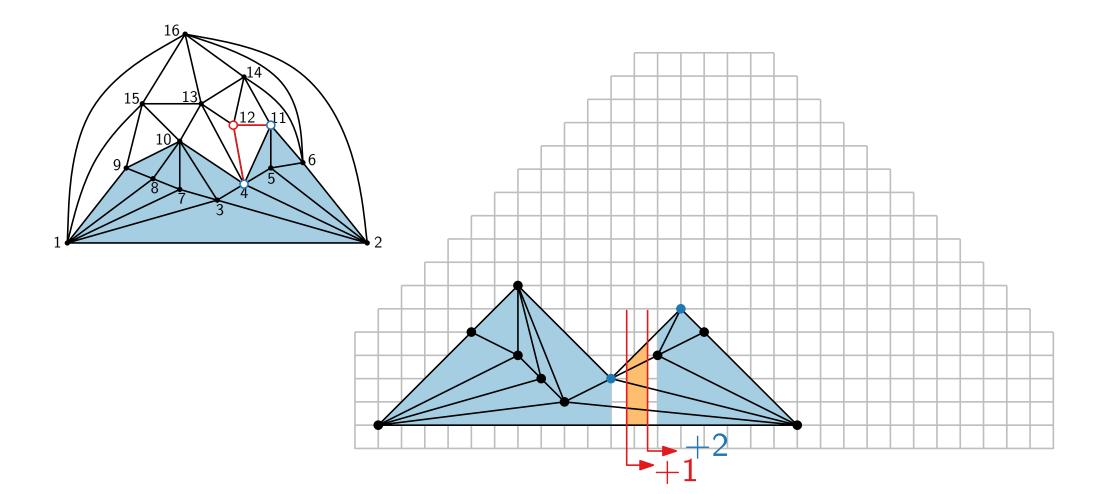


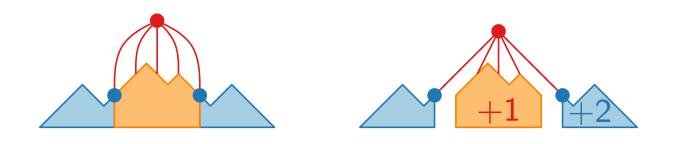


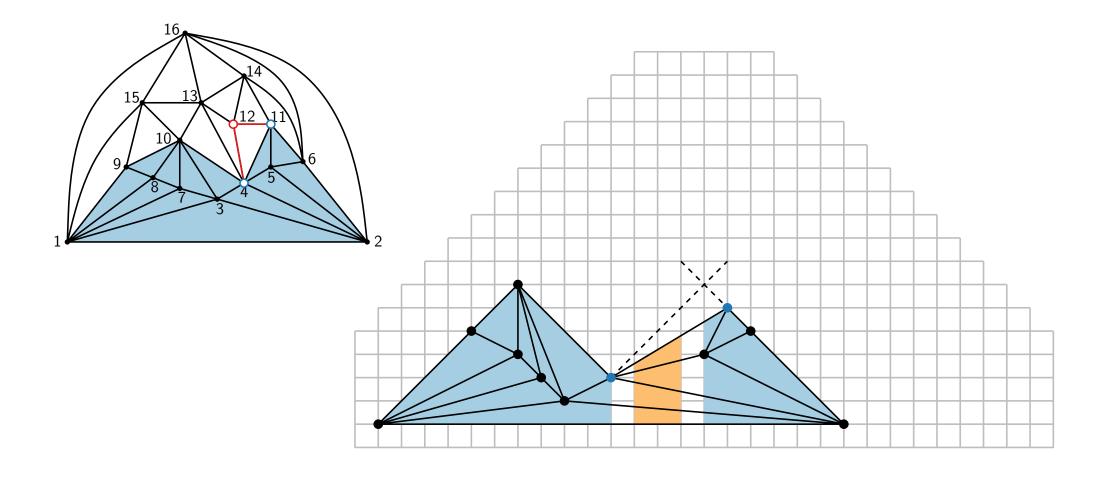


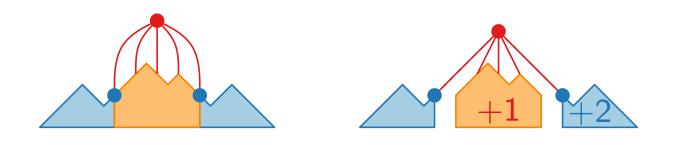


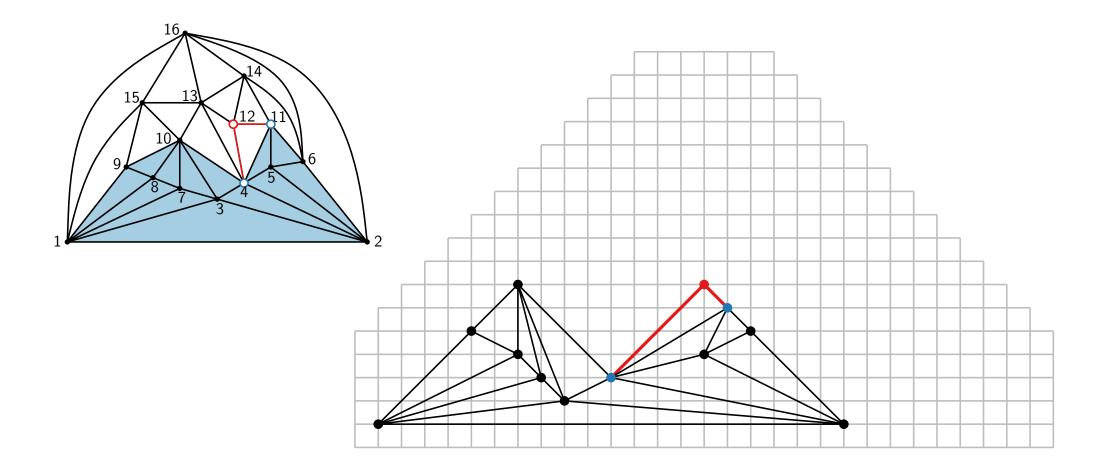


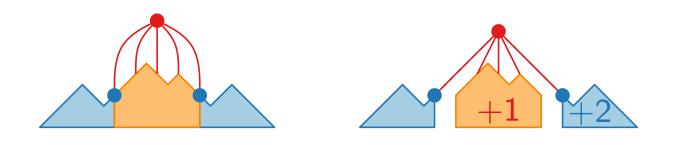


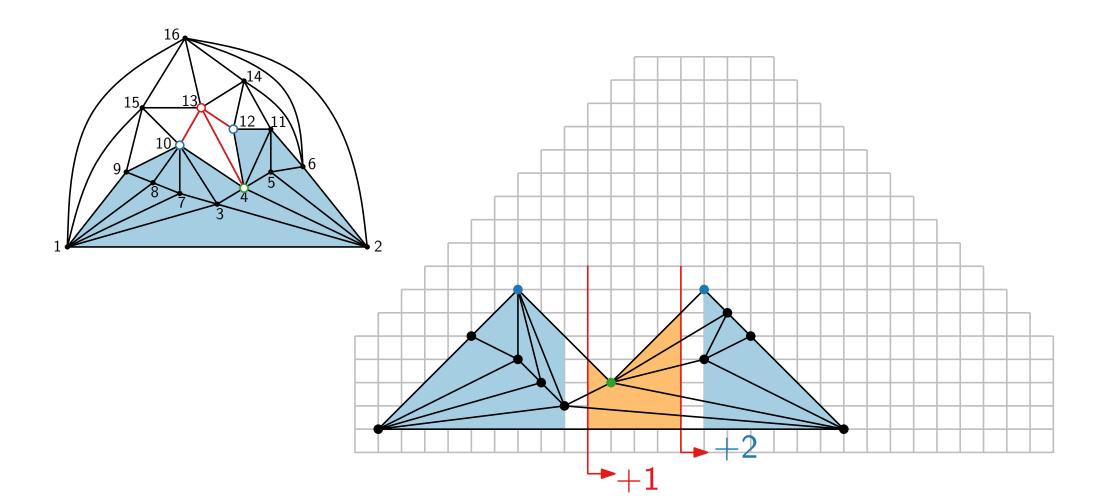


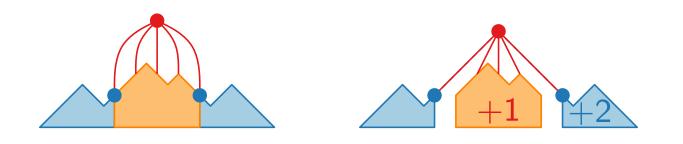


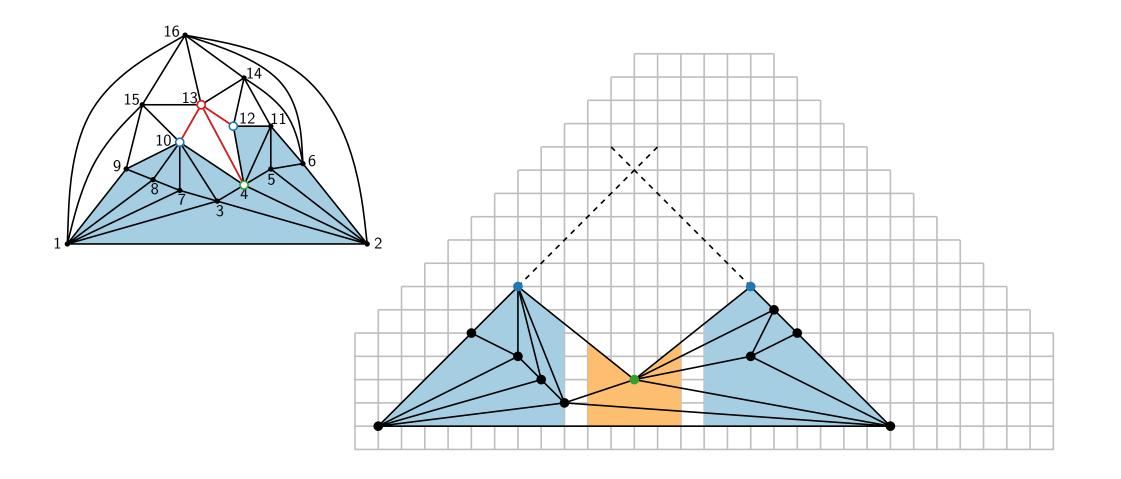


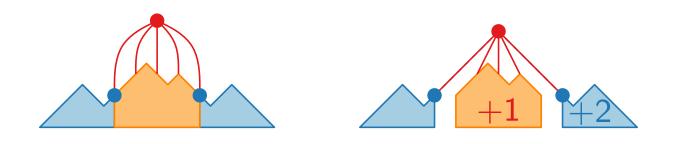


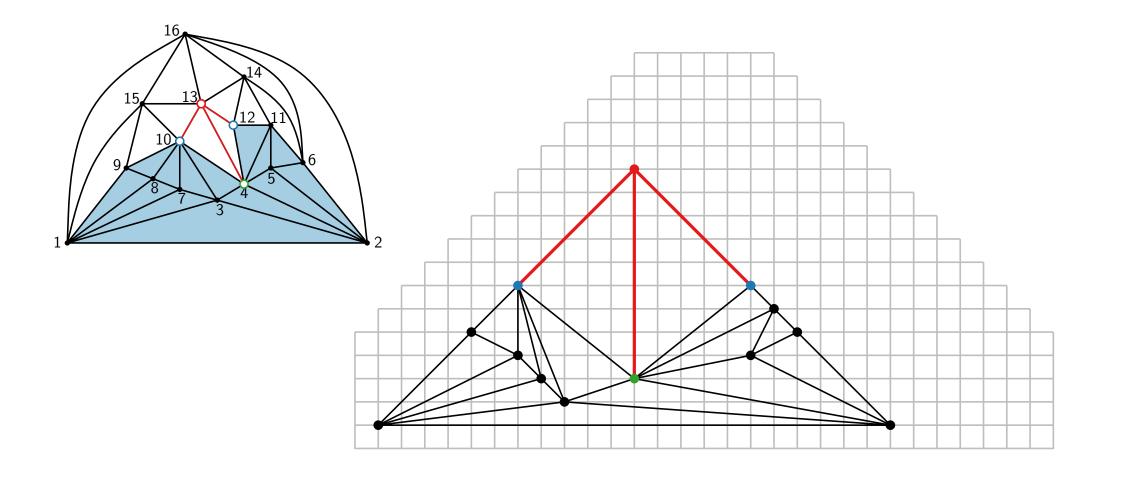


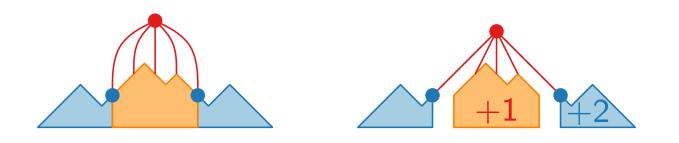


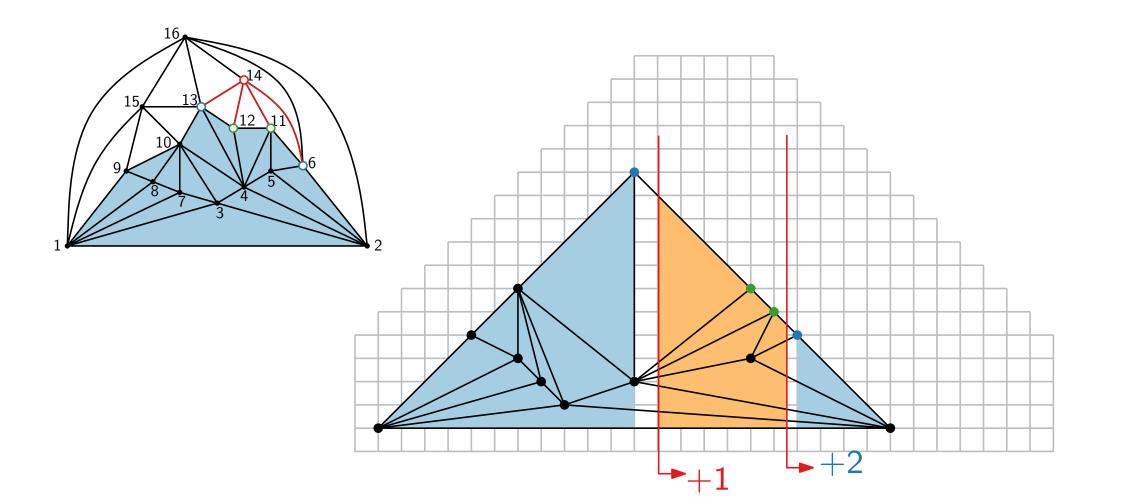


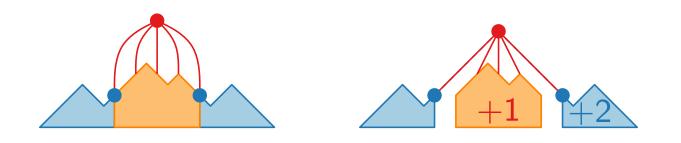


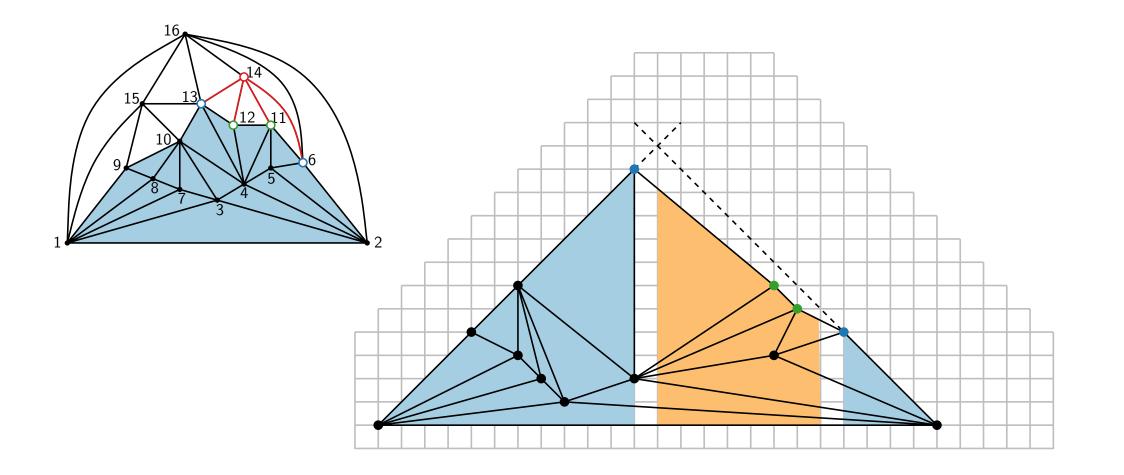


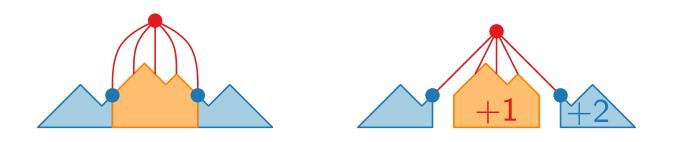


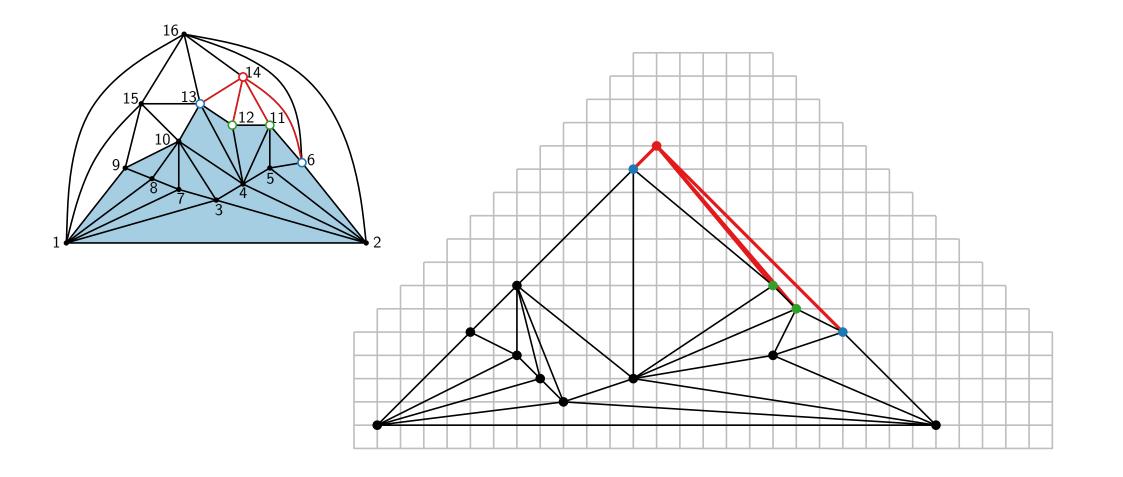


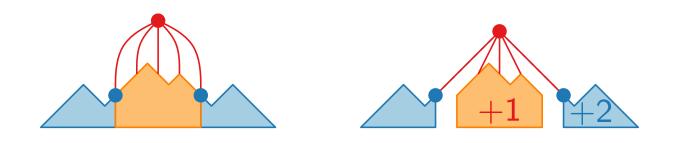


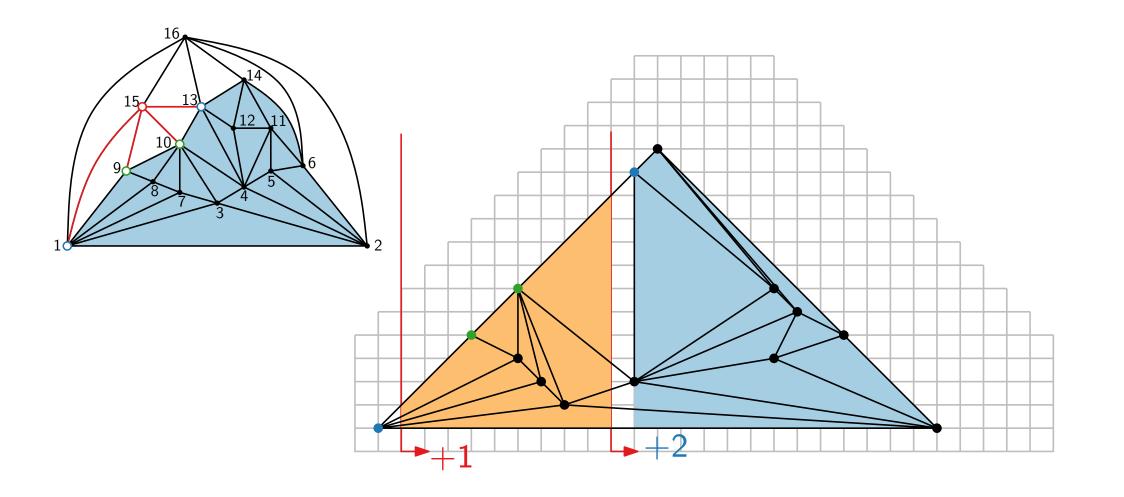


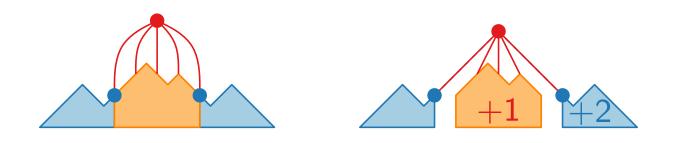


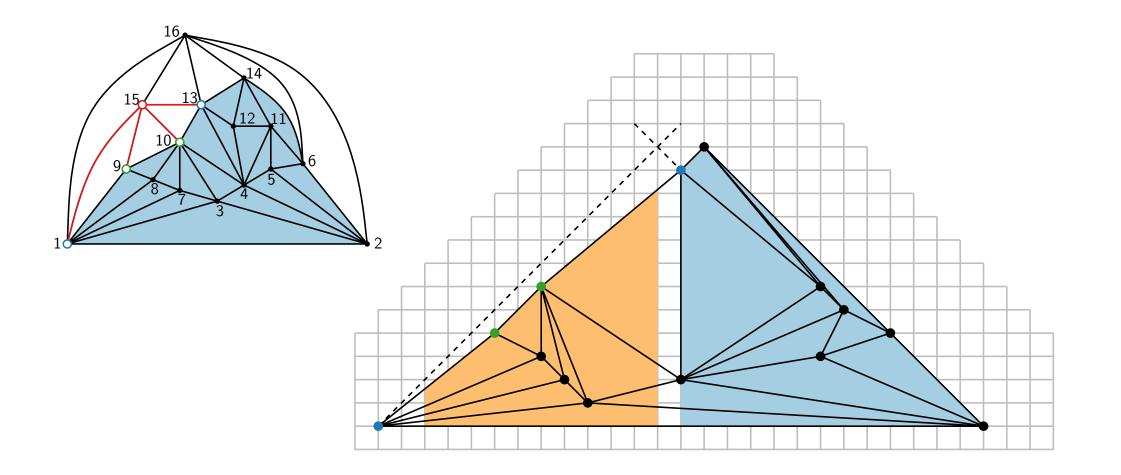


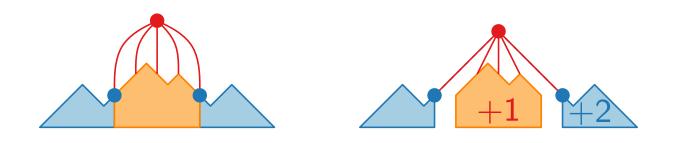


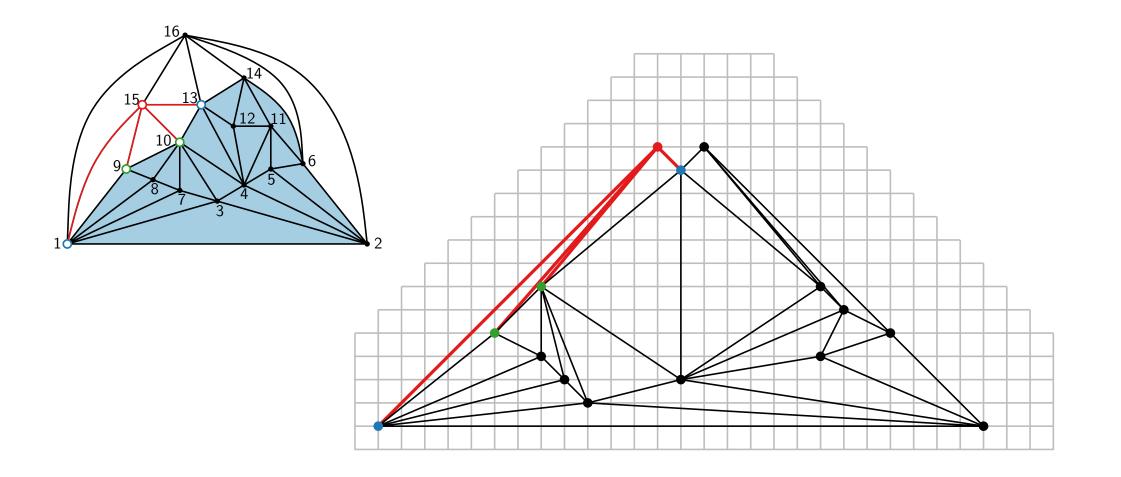


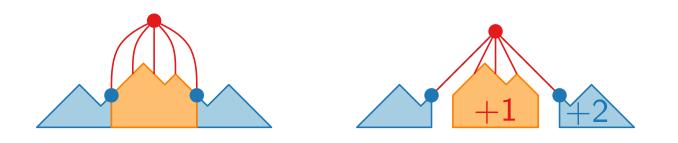


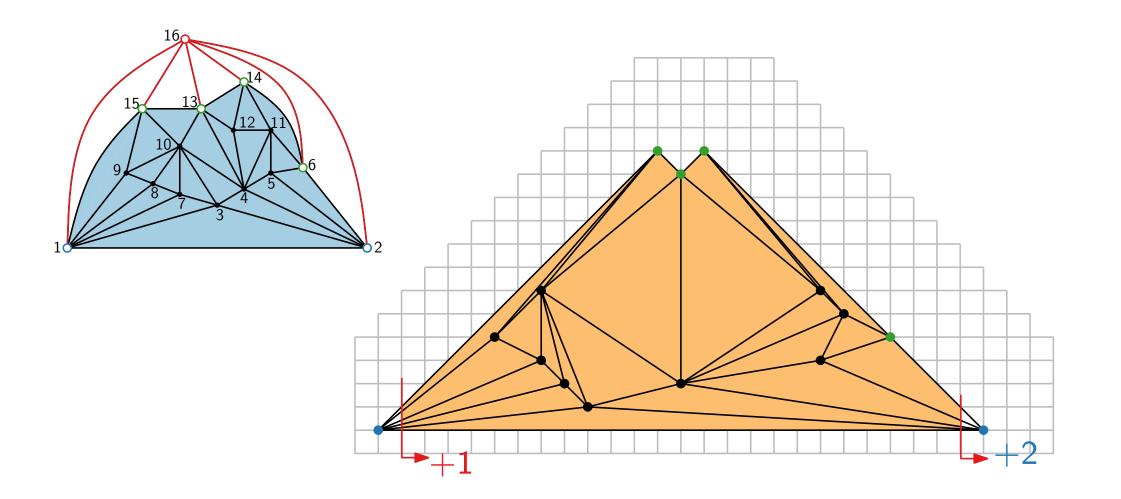


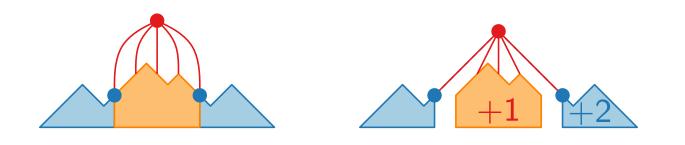


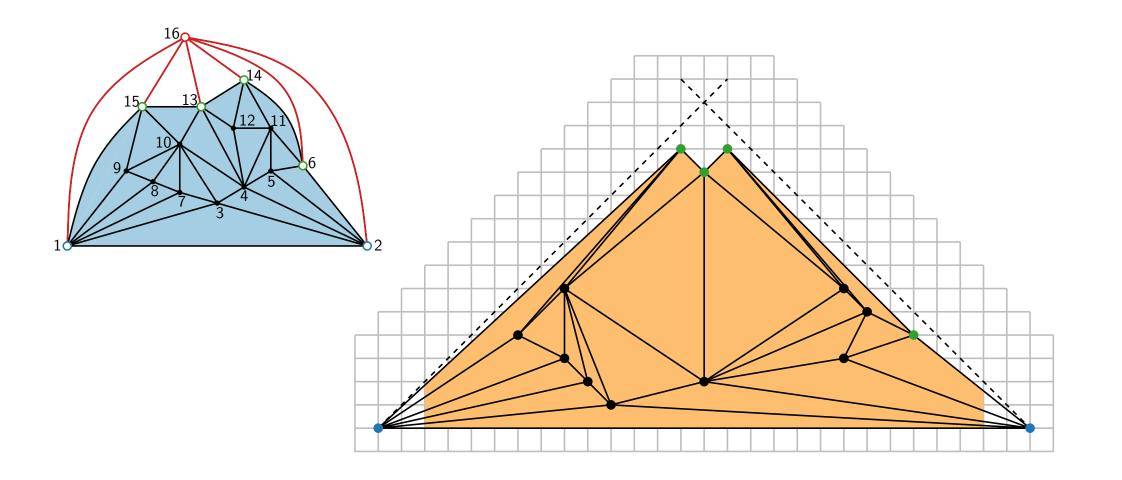


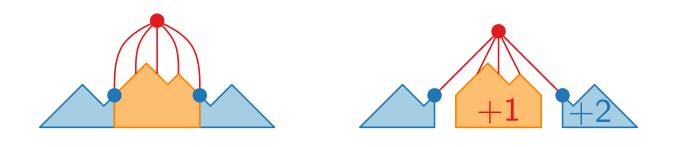


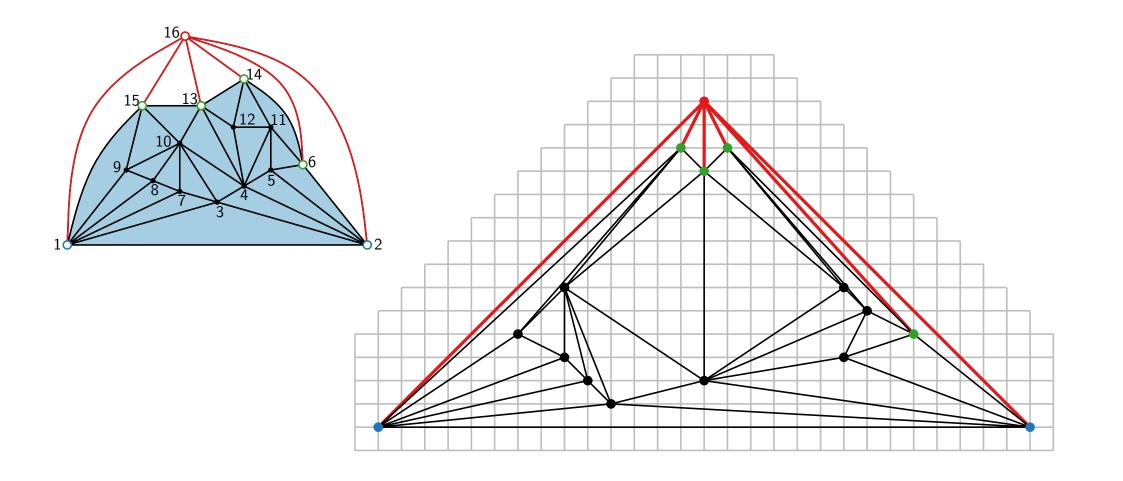


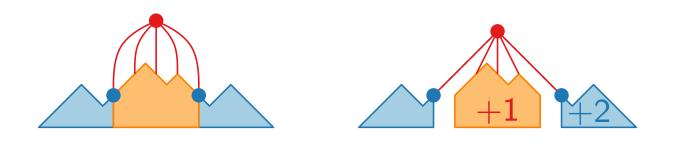


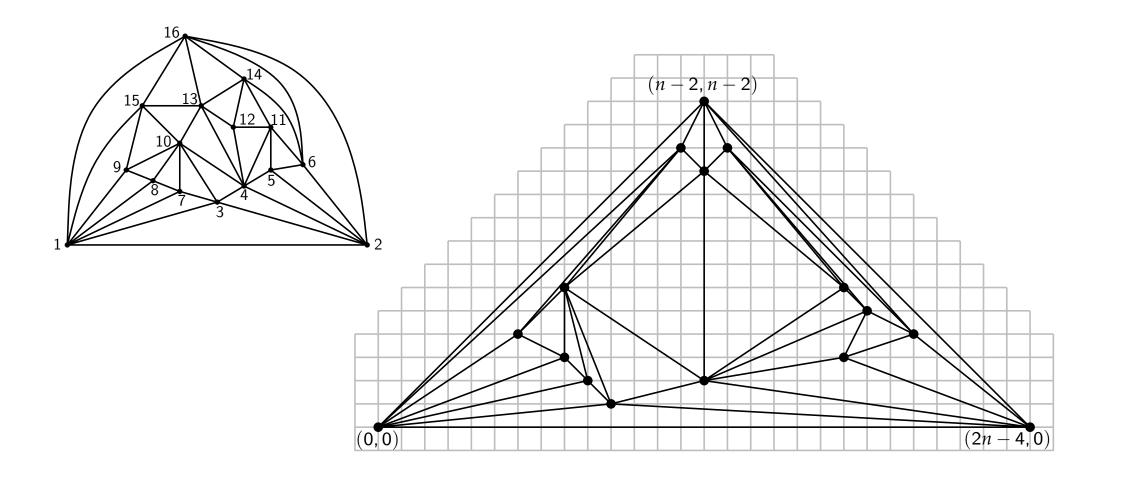


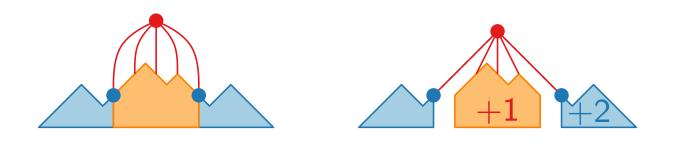


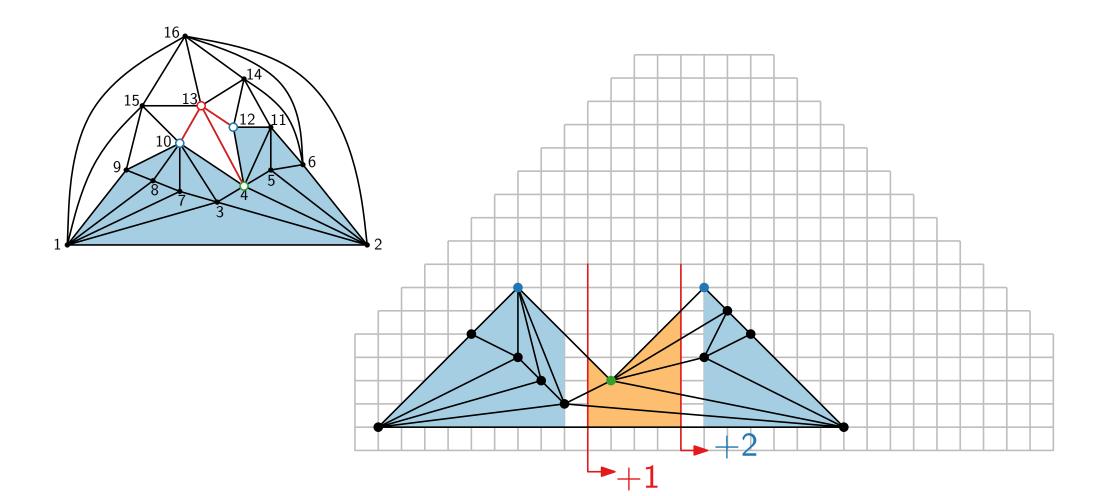


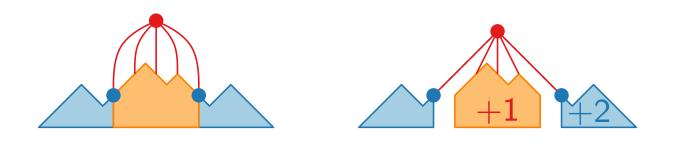


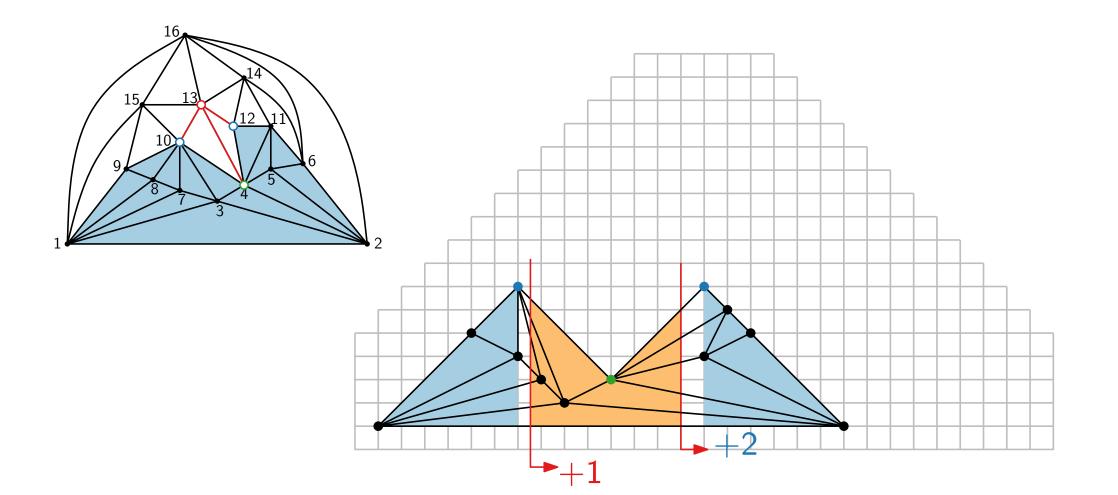


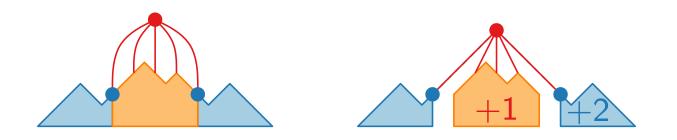




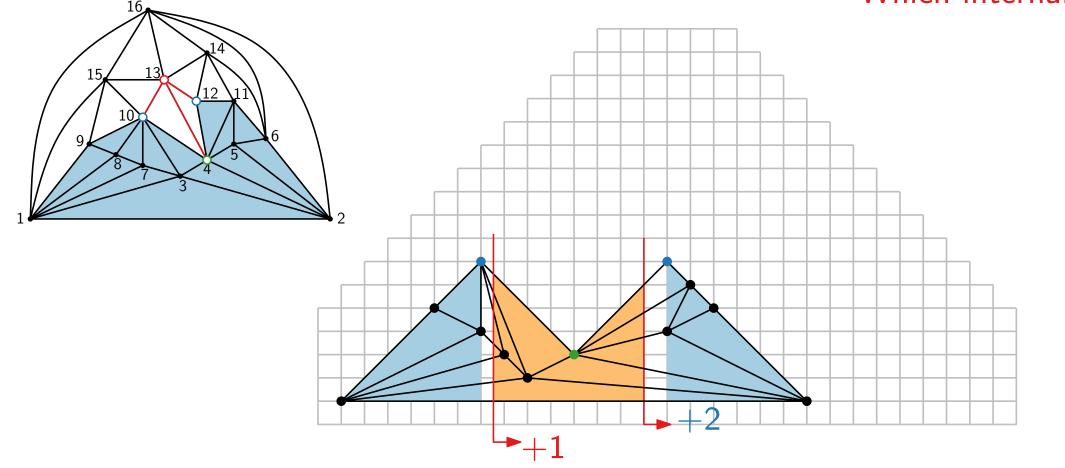


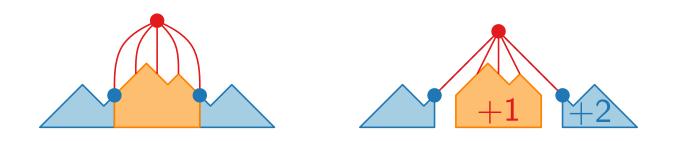


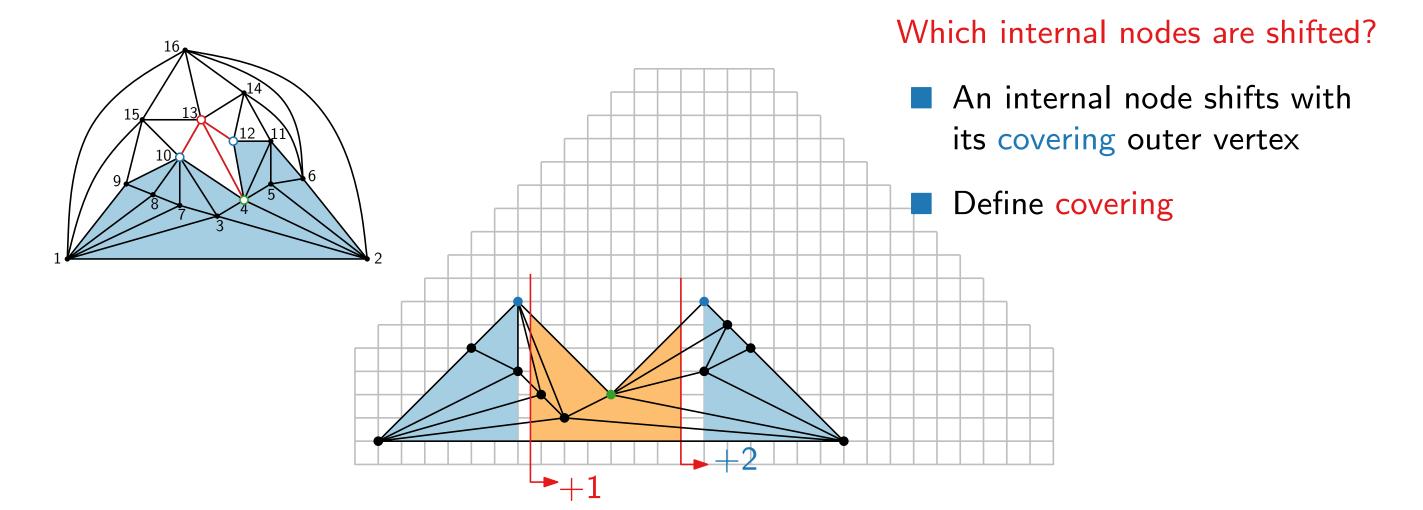


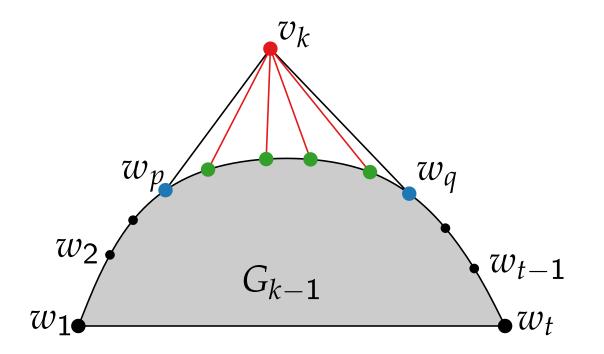


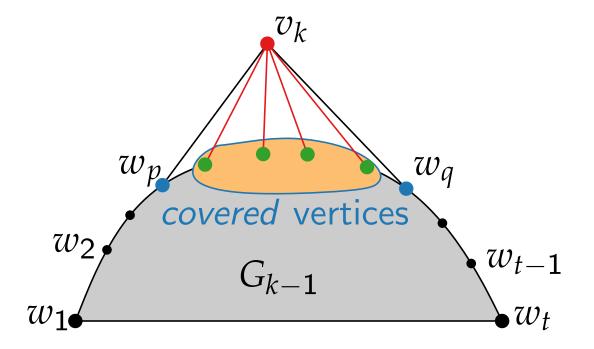
Which internal nodes are shifted?

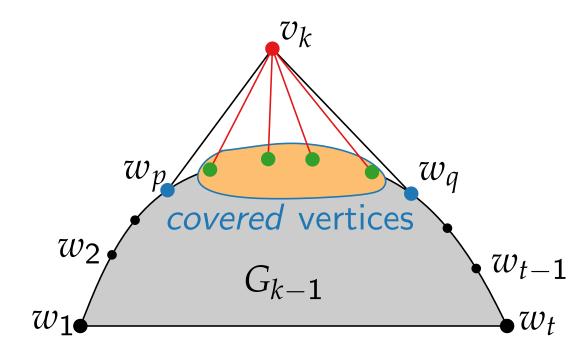




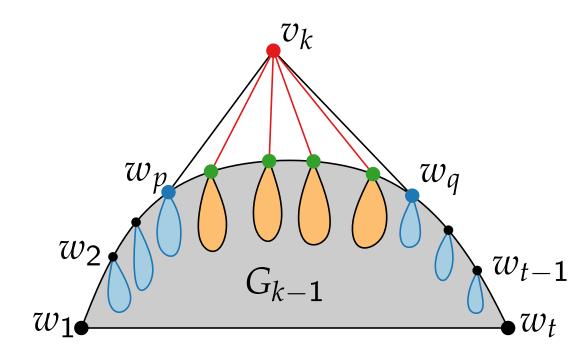




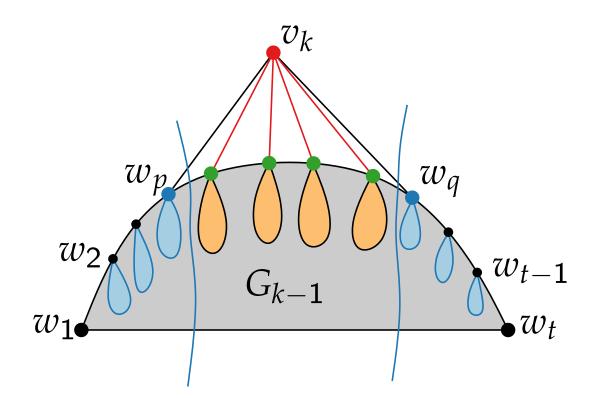




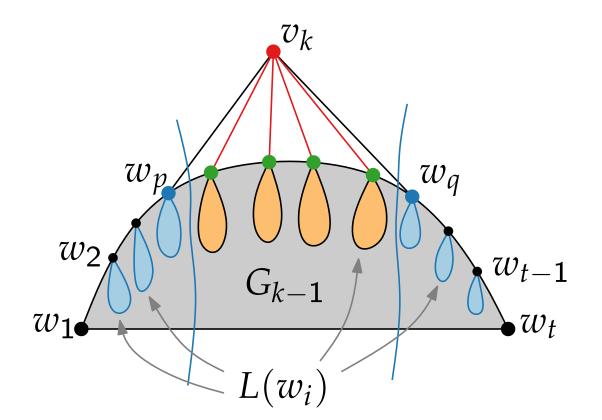
- Each internal vertex is covered exactly once.
- **Covering relation** defines a tree in *G*
- and a forest in G_i , $1 \le i \le n-1$.



- Each internal vertex is covered exactly once.
- Covering relation defines a tree in G
- and a forest in G_i , $1 \le i \le n-1$.



- Each internal vertex is covered exactly once.
- **Covering relation** defines a tree in *G*
- and a forest in G_i , $1 \le i \le n-1$.

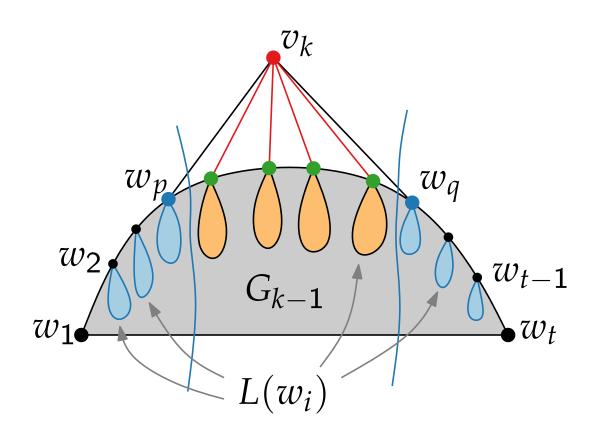


- Each internal vertex is covered exactly once.
- Covering relation defines a tree in G
- and a forest in G_i , $1 \le i \le n-1$.

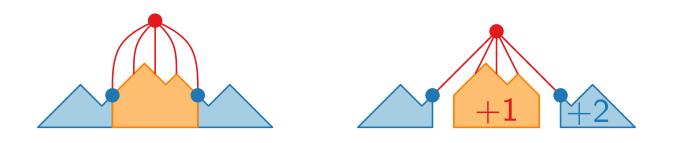
Definition.

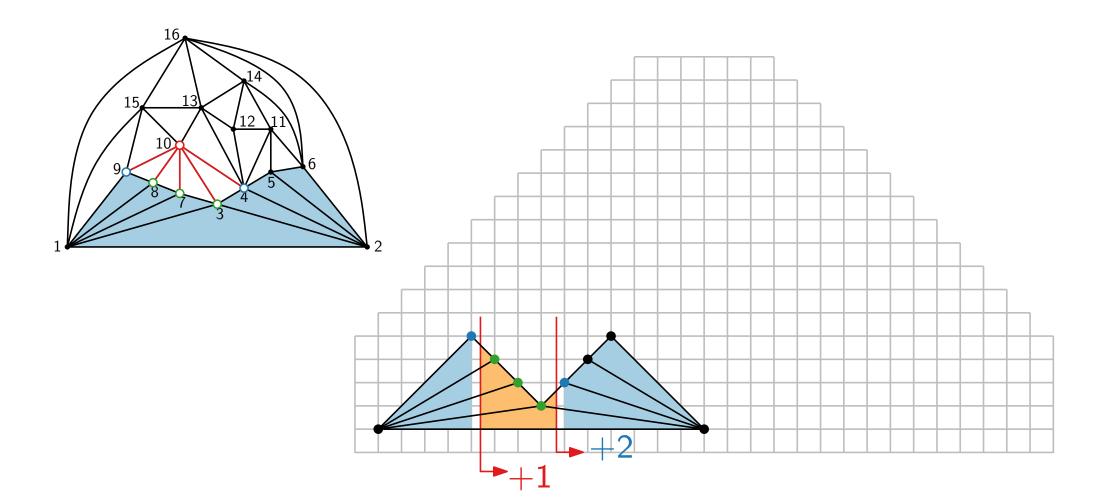
 $L(w_i)$ is the set of vertices covered by w_i

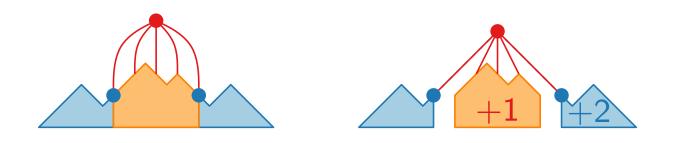
 $L(w_i)$ is the subtree of the covering tree rooted at w_i

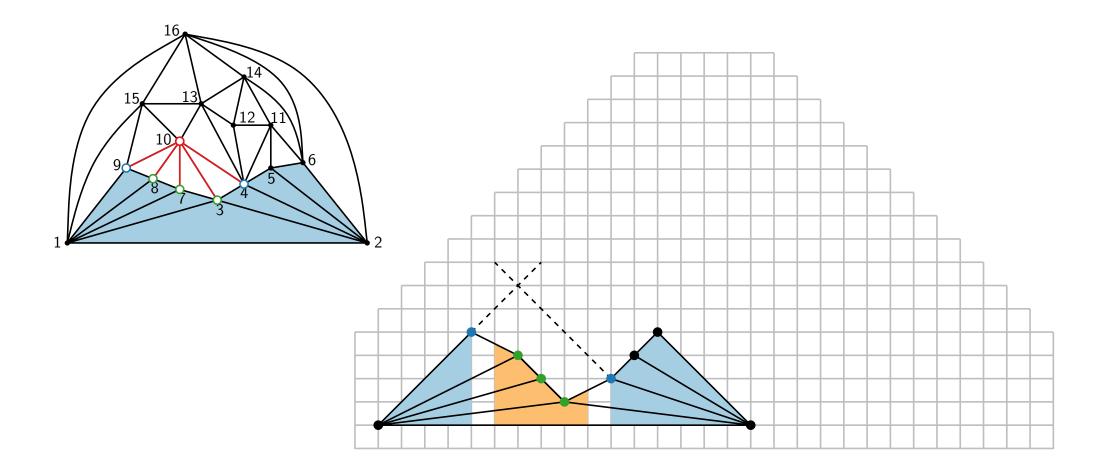


- Each internal vertex is covered exactly once.
- Covering relation defines a tree in G
- and a forest in G_i , $1 \le i \le n-1$.

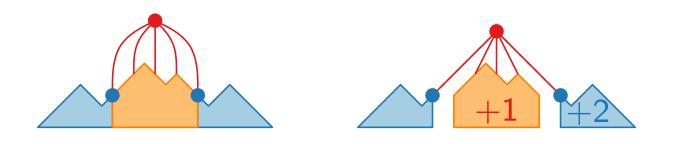


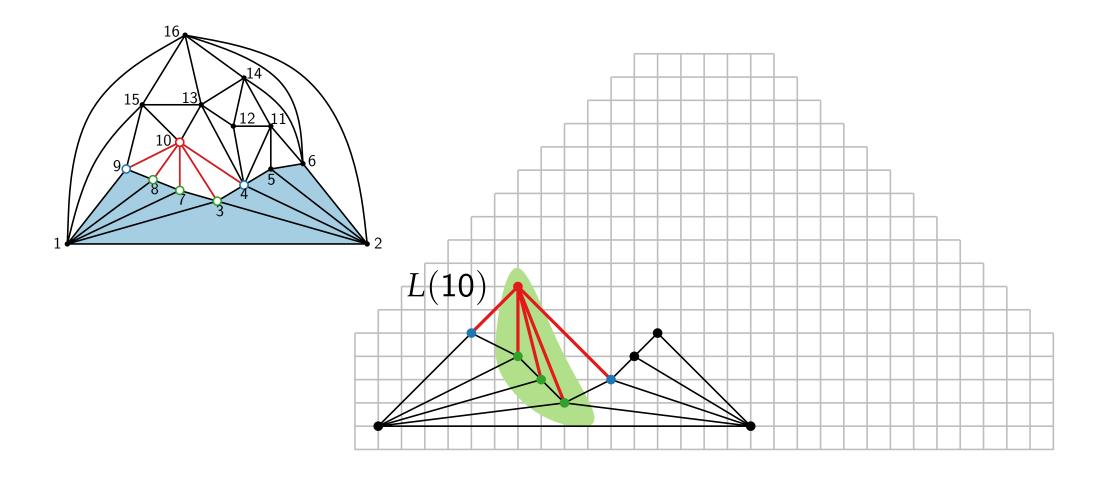


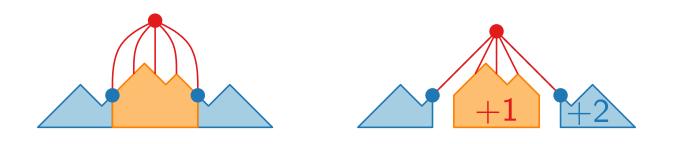


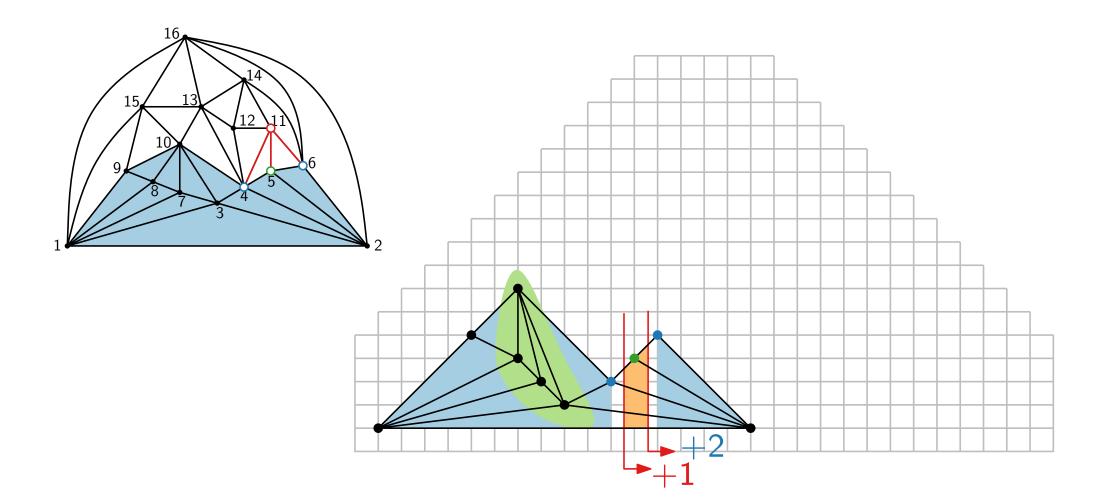


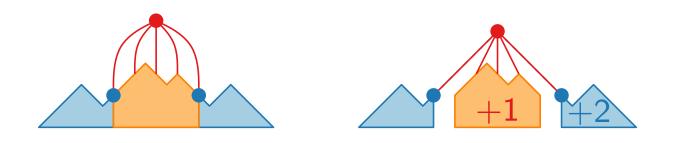
14 - 2

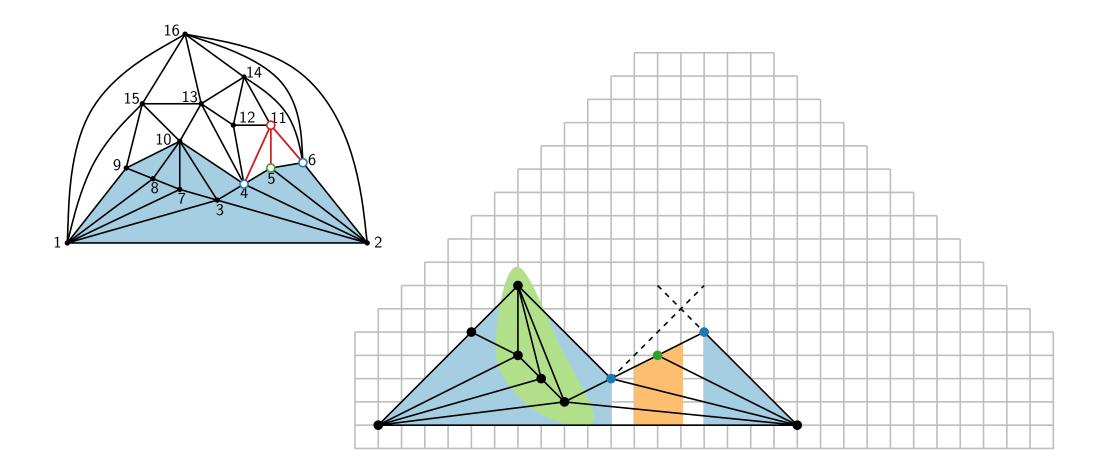


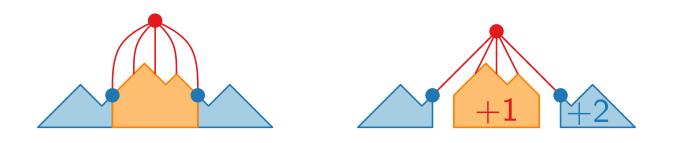


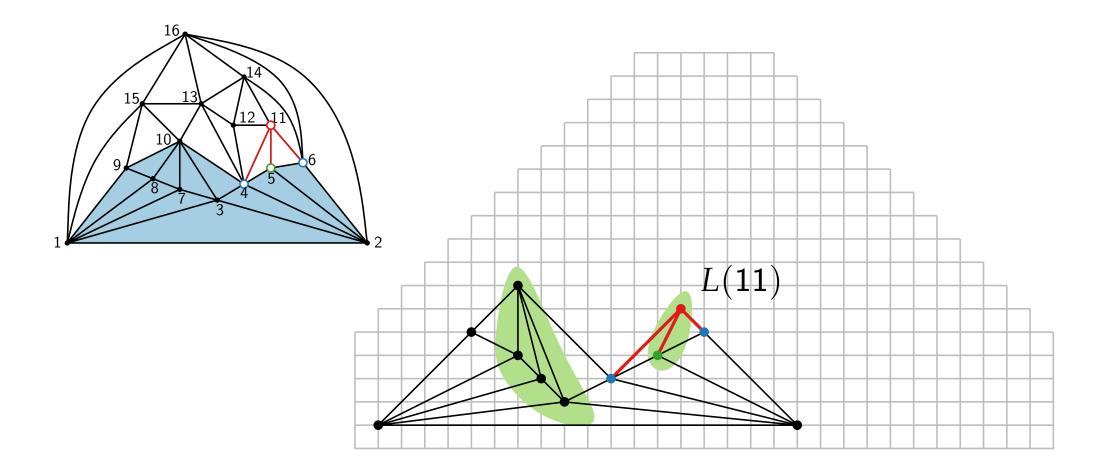


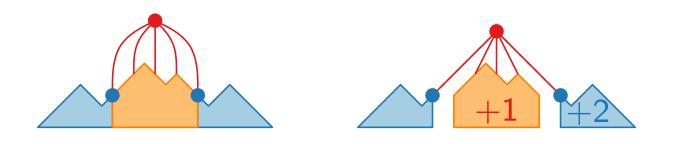


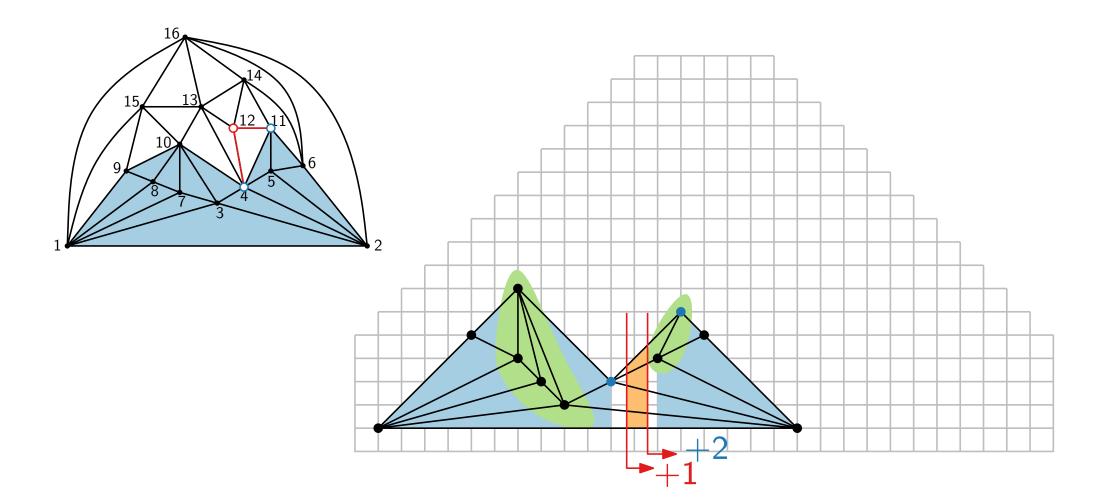


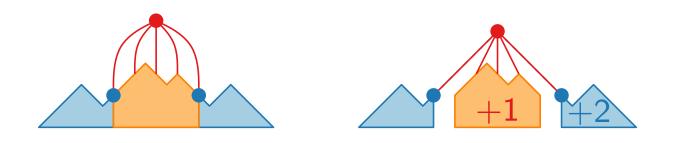


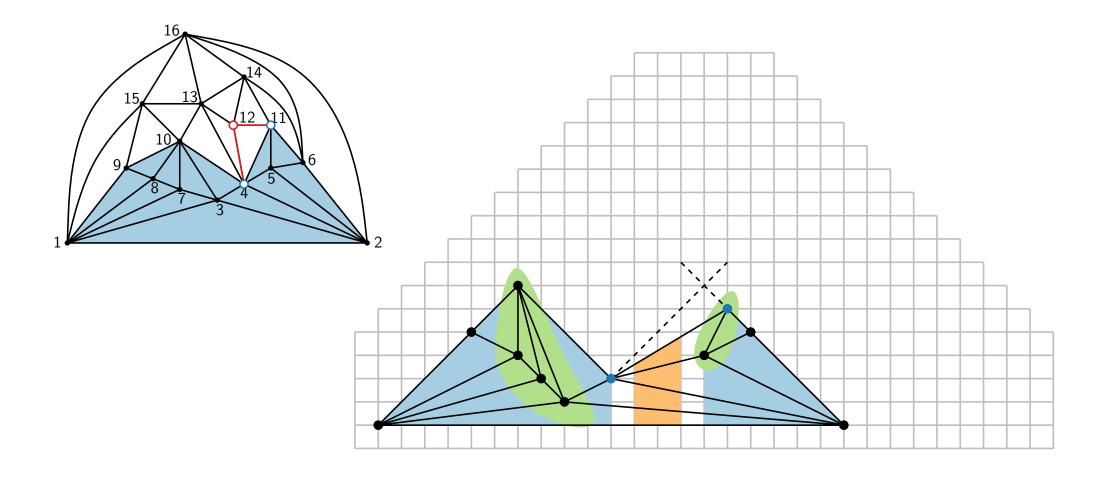


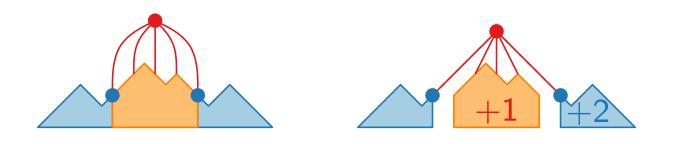


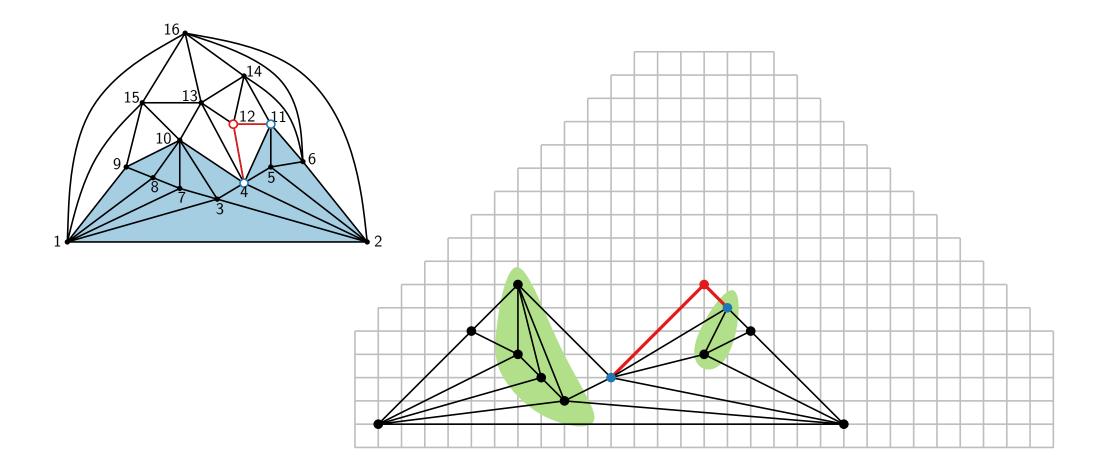


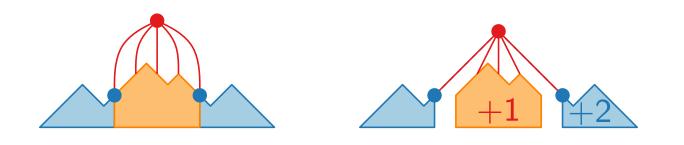


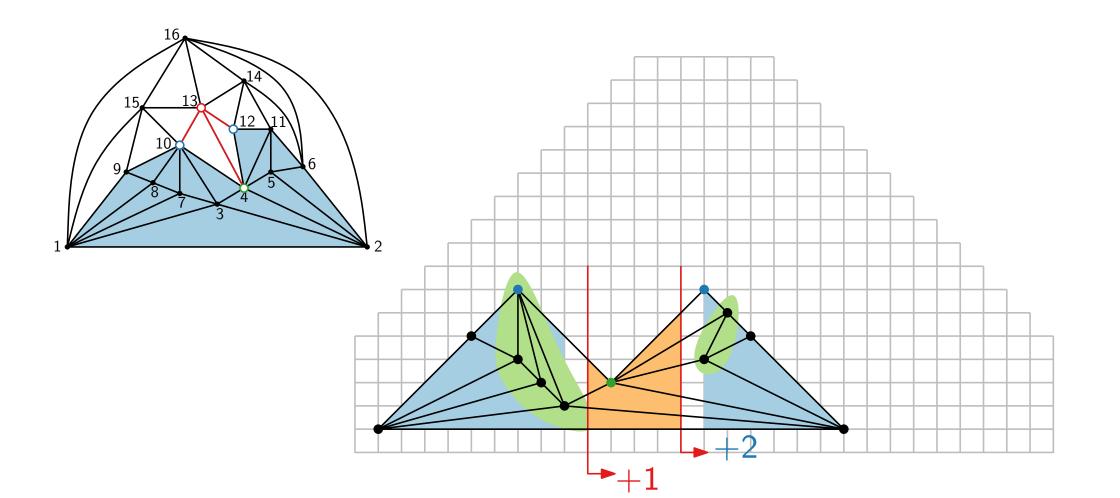


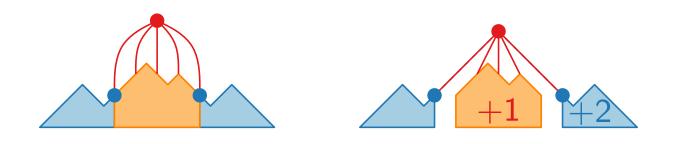


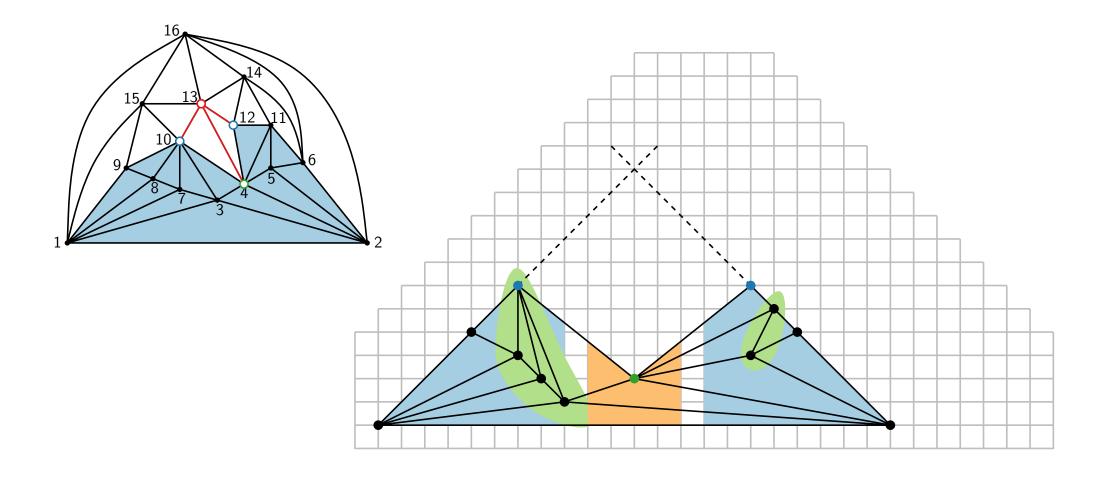


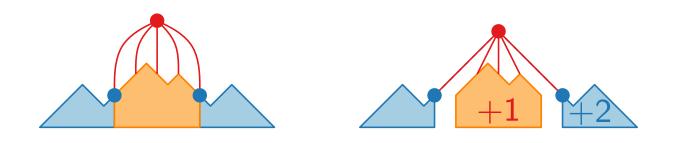


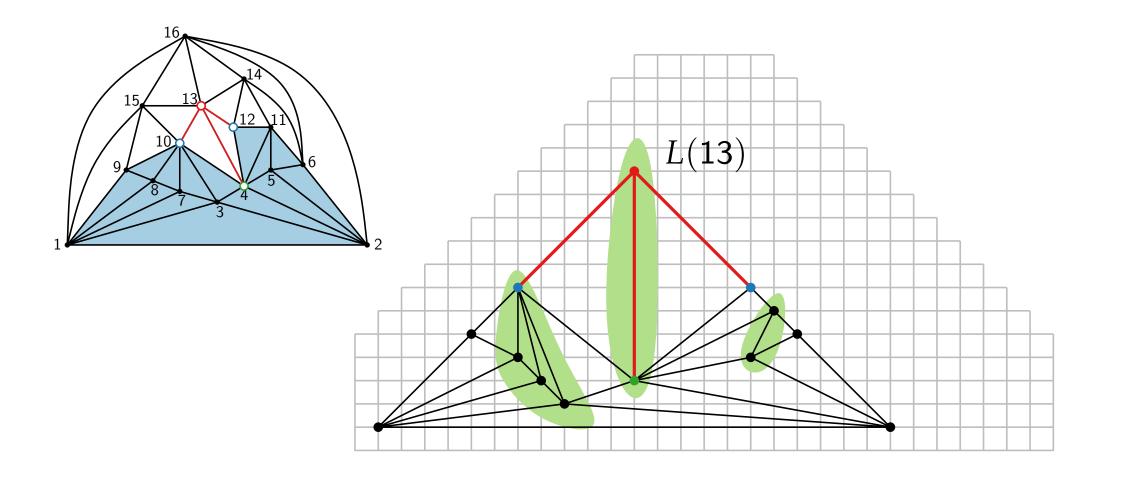


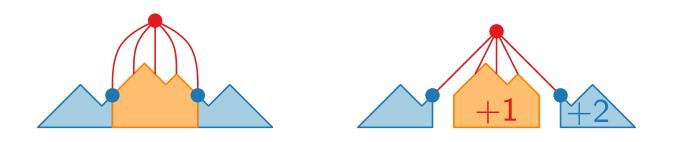


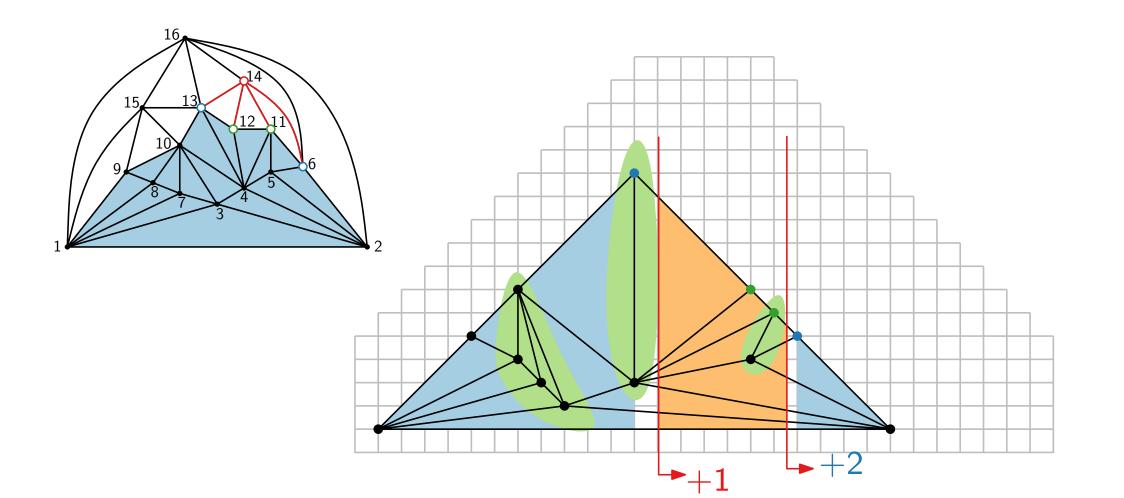


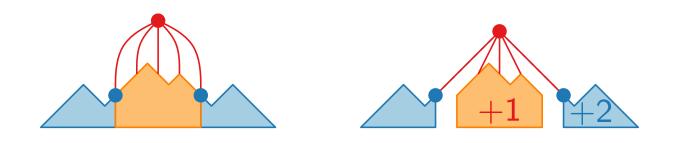


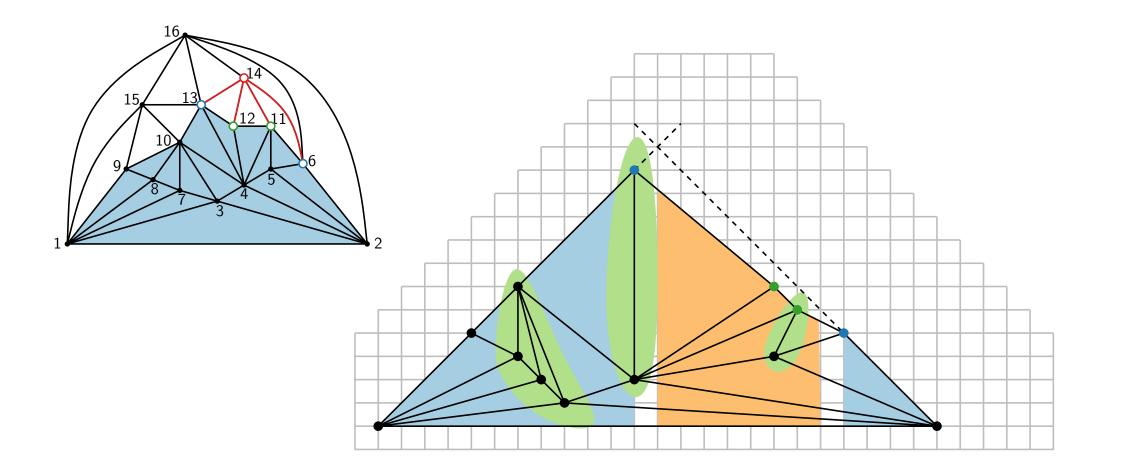


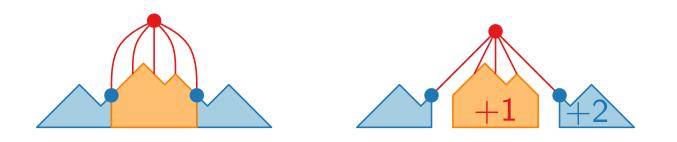


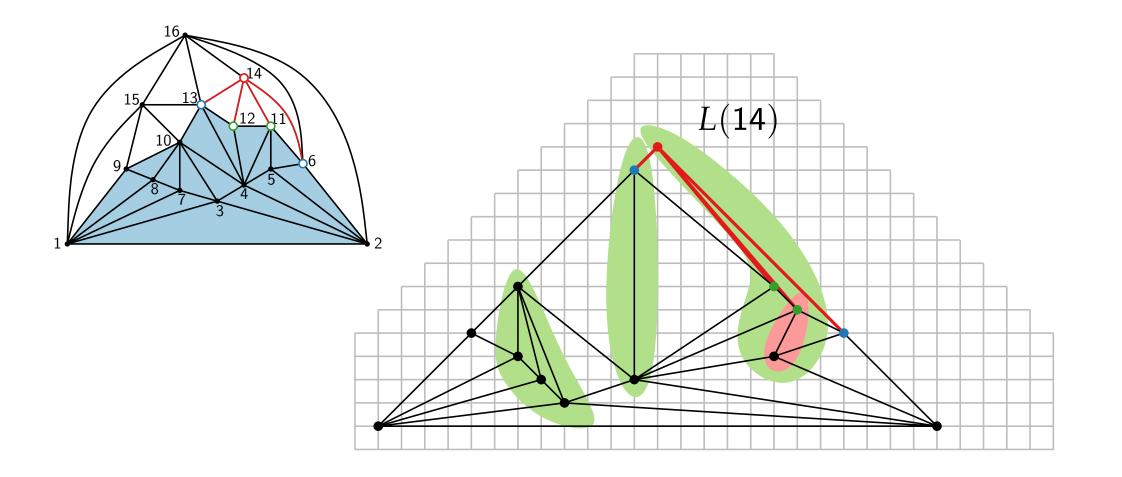


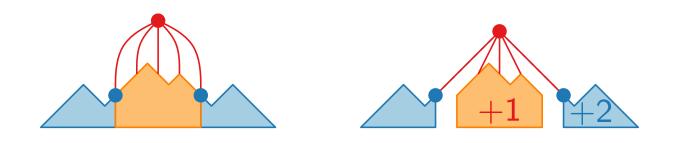


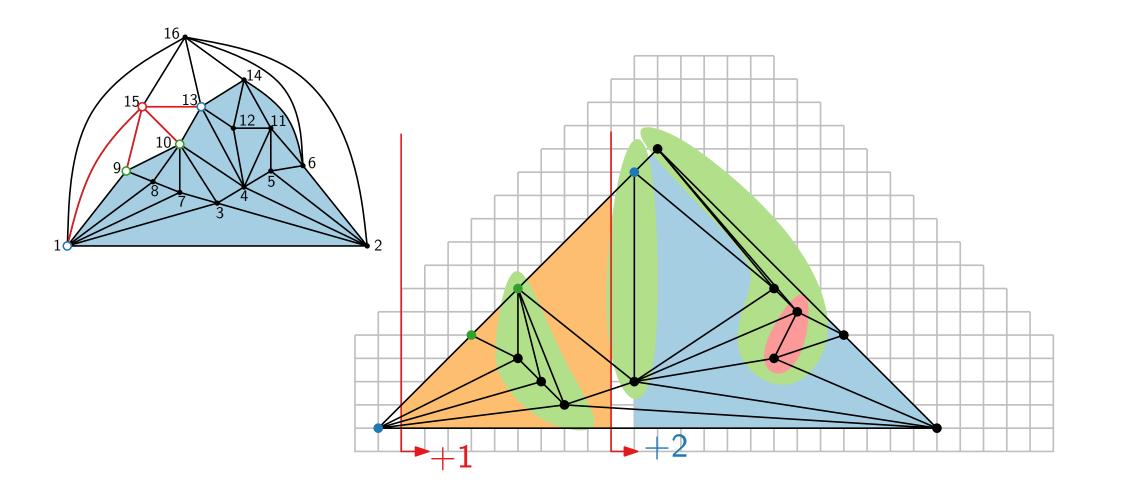


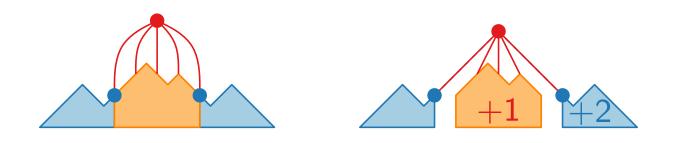


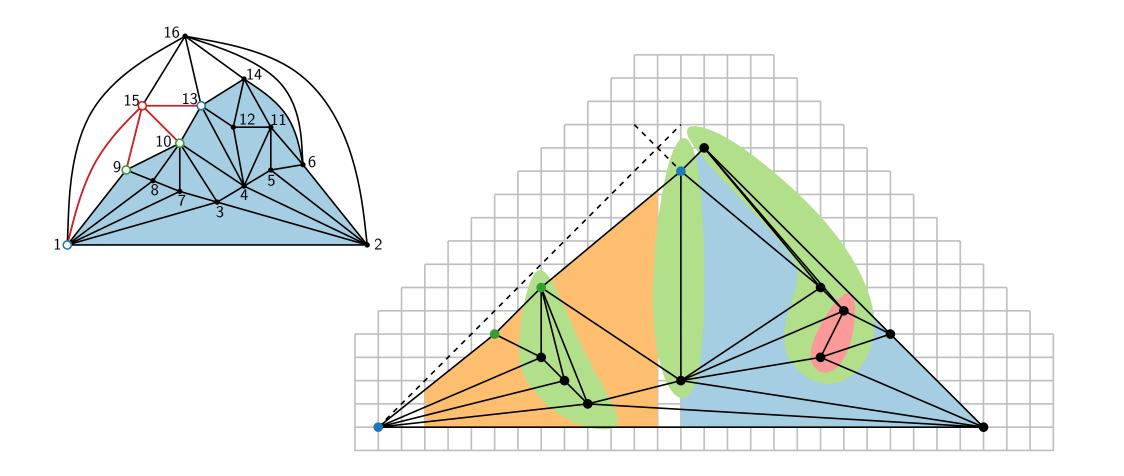


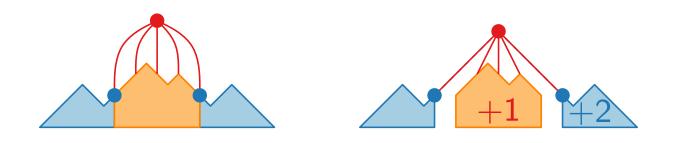


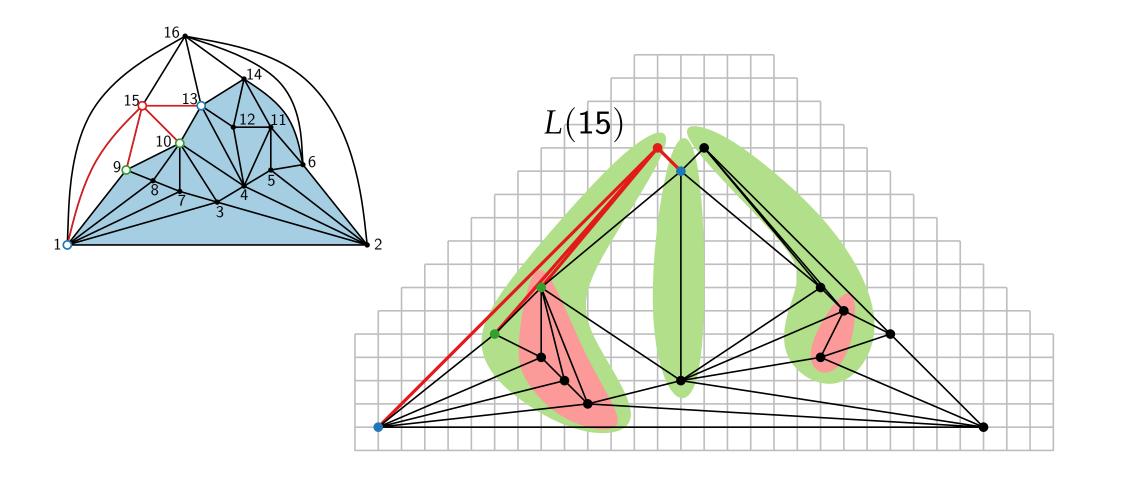


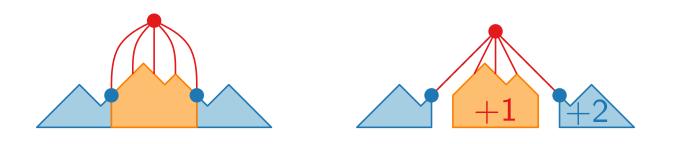


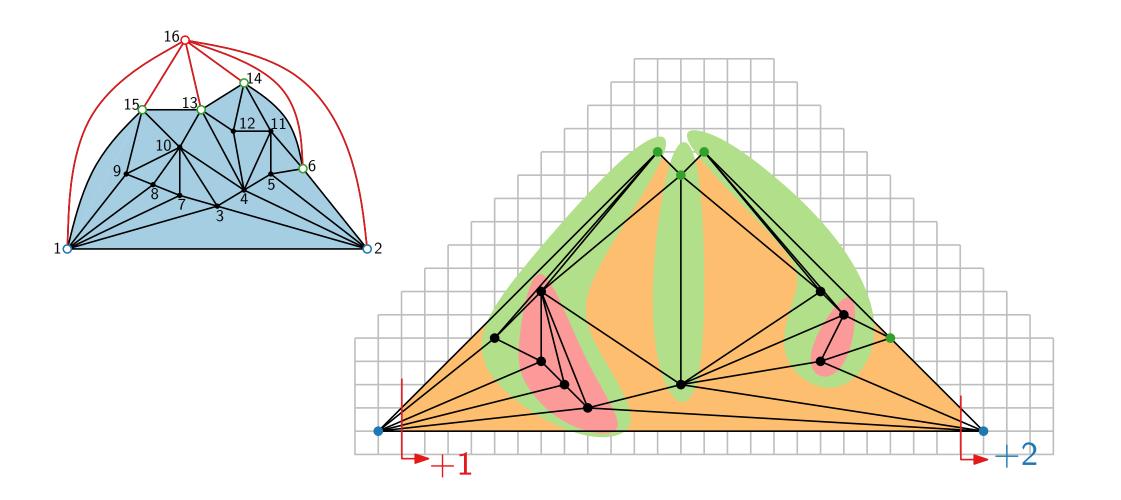


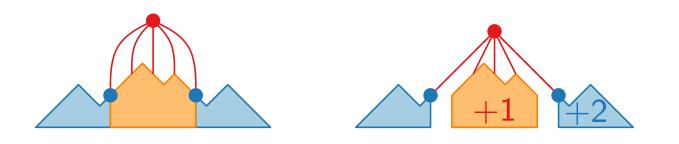


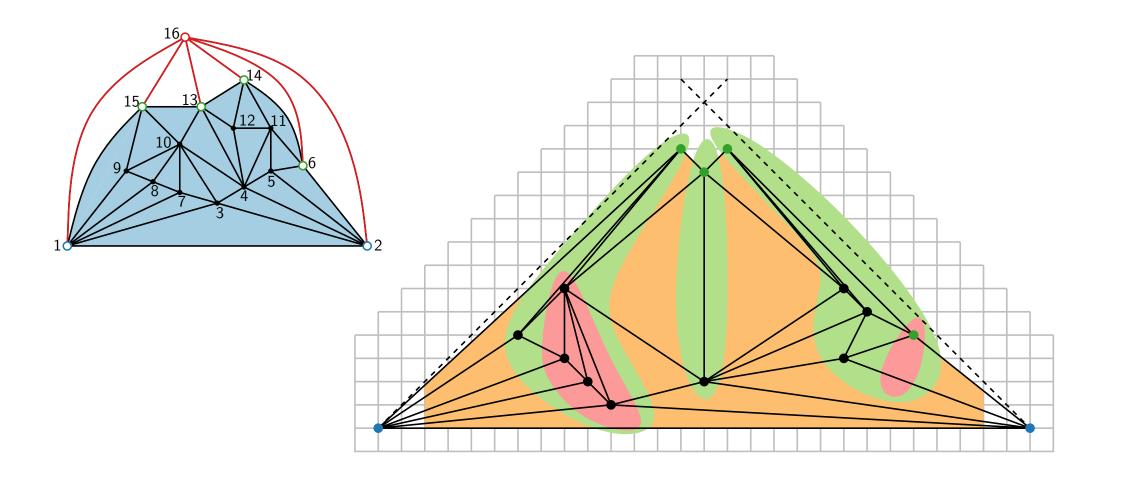


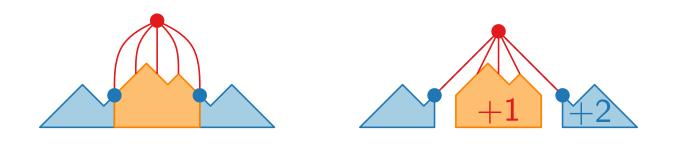


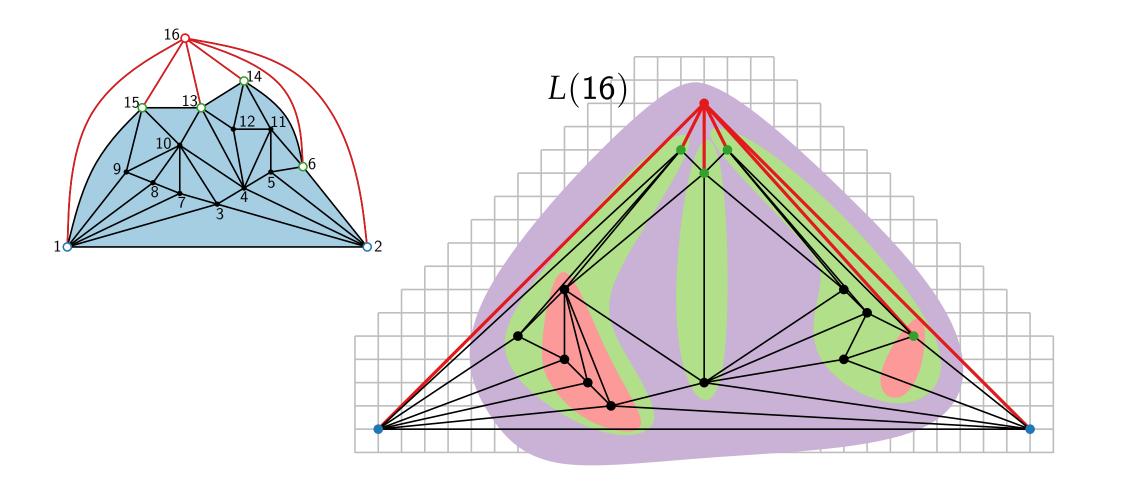


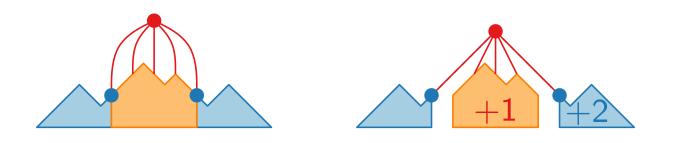


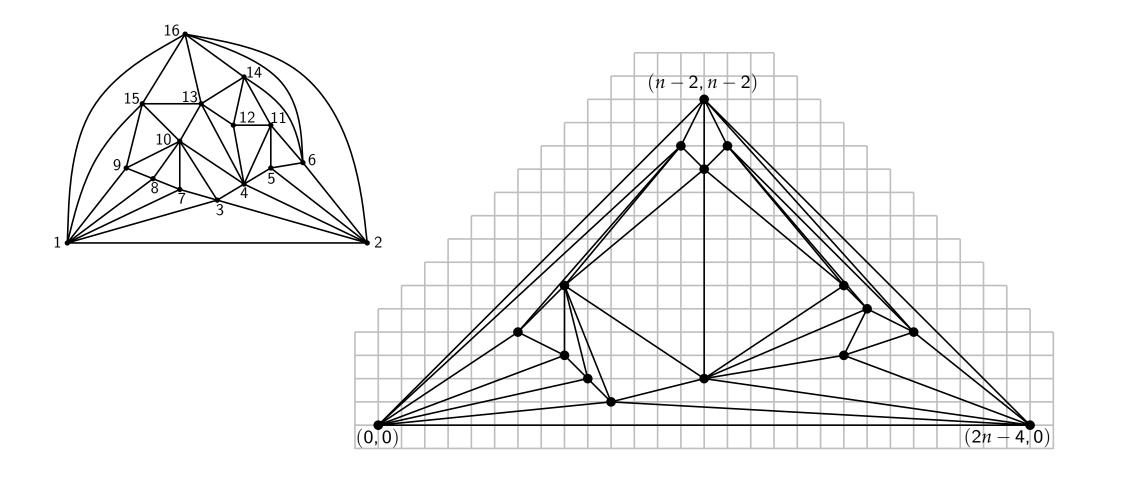




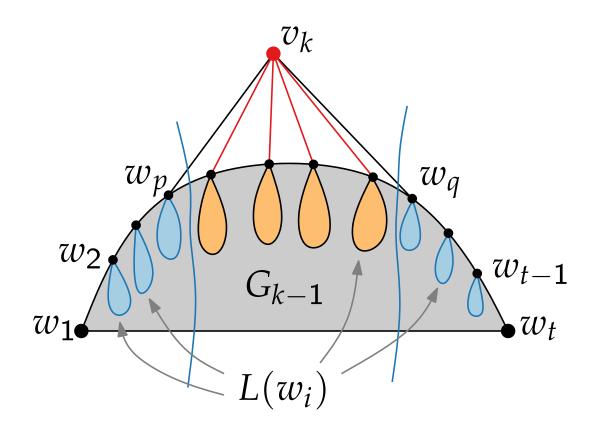








Shift method – planarity

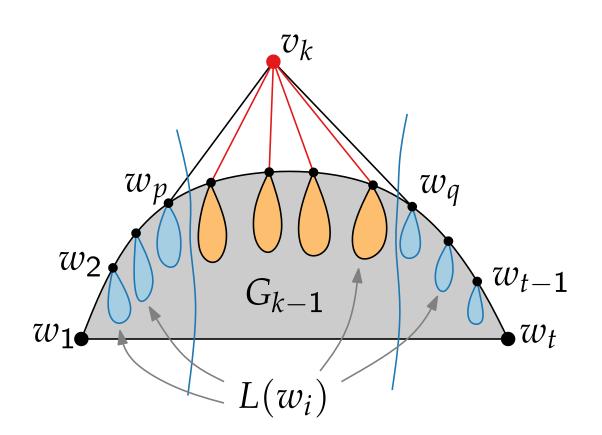


Observations.

- Each internal vertex is covered exactly once.
- Covering relation defines a tree in G
- and a forest in G_i , $1 \le i \le n-1$.

Shift method – planarity

Lemma. Let $0 < \delta_1 \leq \delta_2 \leq \cdots \leq \delta_t \in \mathbb{N}$, such that $\delta_q - \delta_p \geq 2$ and even. If we shift $L(w_i)$ by δ_i to the right, we get a planar straight-line drawing.



Observations.

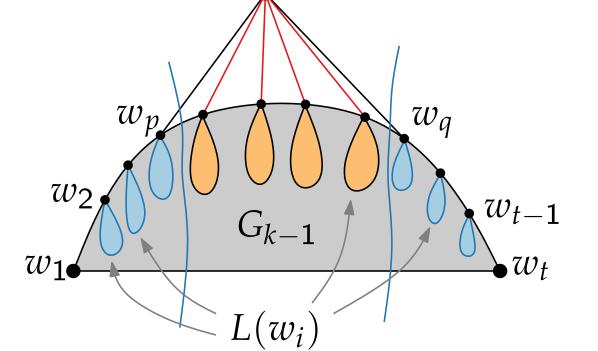
- Each internal vertex is covered exactly once.
- Covering relation defines a tree in G
- **and** a forest in G_i , $1 \le i \le n-1$.

Shift method – planarity

Lemma. Let $0 < \delta_1 \leq \delta_2 \leq \cdots \leq \delta_t \in \mathbb{N}$, such that $\delta_q - \delta_p \geq 2$ and even. If we shift $L(w_i)$ by δ_i to the right, we get a planar straight-line drawing.

Proof by induction:

If G_{k-1} straight-line planar, then also G_k .



 v_k

Observations.

- Each internal vertex is covered exactly once.
- \blacksquare Covering relation defines a tree in G
- and a forest in G_i , $1 \le i \le n-1$.

Shift method – pseudocode

```
Let v_1, \ldots, v_n be a canonical order of G
for i = 1 to 3 do
\lfloor L(v_i) \leftarrow \{v_i\}
P(v_1) \leftarrow (0, 0); P(v_2) \leftarrow (2, 0), P(v_3) \leftarrow (1, 1)
for k = 4 to n do
```

Shift method – pseudocode

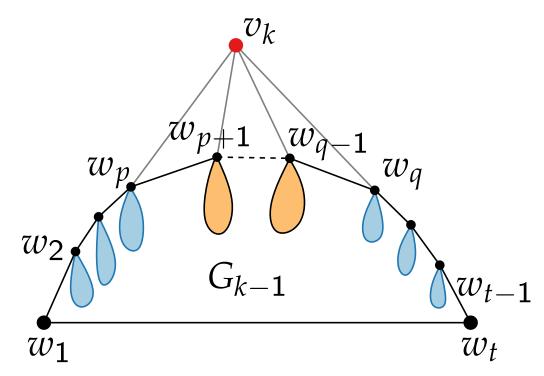
```
Let v_1, \ldots, v_n be a canonical order of G
for i = 1 to 3 do
| L(v_i) \leftarrow \{v_i\}
P(v_1) \leftarrow (0,0); P(v_2) \leftarrow (2,0), P(v_3) \leftarrow (1,1)
for k = 4 to n do
    Let w_1 = v_1, w_2, \ldots, w_{t-1}, w_t = v_2 denote the boundary of G_{k-1}
    and let w_p, \ldots, w_q be the neighbours of v_k
   for \forall v \in \cup_{i=p+1}^{q-1} L(w_i) do
    | x(v) \leftarrow x(v) + 1
   for \forall v \in \cup_{j=q}^{t} L(w_j) do
    x(v) \leftarrow x(v) + 2
   P(v_k) \leftarrow \text{intersection of } +1/-1 \text{ edges from } P(w_p) \text{ and } P(w_q)
   L(v_k) \leftarrow \cup_{j=p+1}^{q-k} L(w_j) \cup \{v_k\}
```

Shift method – pseudocode

```
Let v_1, \ldots, v_n be a canonical order of G
for i = 1 to 3 do
 \mid L(v_i) \leftarrow \{v_i\}
P(v_1) \leftarrow (0,0); P(v_2) \leftarrow (2,0), P(v_3) \leftarrow (1,1)
for k = 4 to n do
    Let w_1 = v_1, w_2, \ldots, w_{t-1}, w_t = v_2 denote the boundary of G_{k-1}
    and let w_p, \ldots, w_q be the neighbours of v_k
   for \forall v \in \cup_{i=p+1}^{q-1} L(w_i) do
                                                                                         Runtime \mathcal{O}(n^2)
    | x(v) \leftarrow x(v) + 1
                                                                                              Can we do better?
   for \forall v \in \cup_{j=q}^{t} L(w_j) do
    x(v) \leftarrow x(v) + 2
   P(v_k) \leftarrow \text{intersection of } +1/-1 \text{ edges from } P(w_p) \text{ and } P(w_q)
   L(v_k) \leftarrow \cup_{j=p+1}^{q-k} L(w_j) \cup \{v_k\}
```

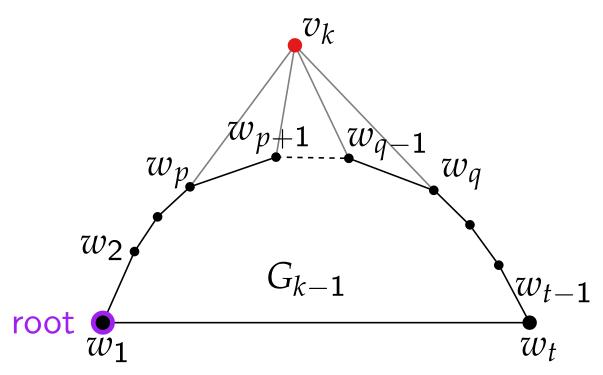
Idea:

- Instead of storing explicit x-coordinates, we store x differences.
- We need a spanning tree rooted at v_1



Idea:

- Instead of storing explicit x-coordinates, we store x differences.
- We need a spanning tree rooted at v_1

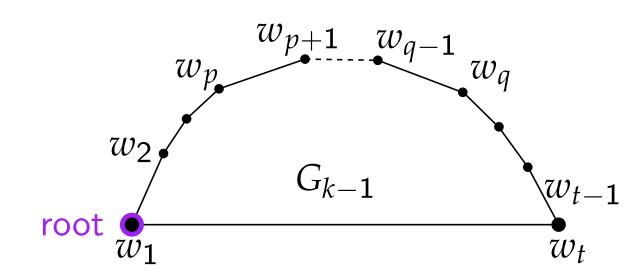


Idea:

- Instead of storing explicit x-coordinates, we store x differences.
- We need a spanning tree rooted at v_1

Outerface of G_{k-1}

• at
$$w_i$$
 store $\Delta x(w_i) = x(w_i) - x(w_{i-1})$

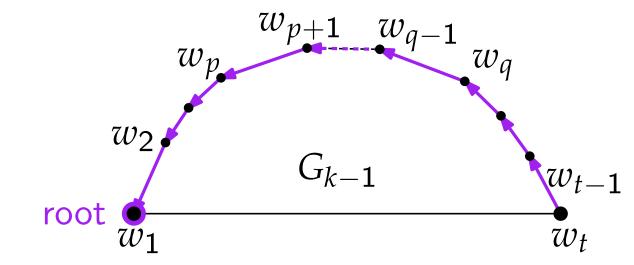


Idea:

- Instead of storing explicit x-coordinates, we store x differences.
- We need a spanning tree rooted at v_1

Outerface of G_{k-1}

• at
$$w_i$$
 store $\Delta x(w_i) = x(w_i) - x(w_{i-1})$

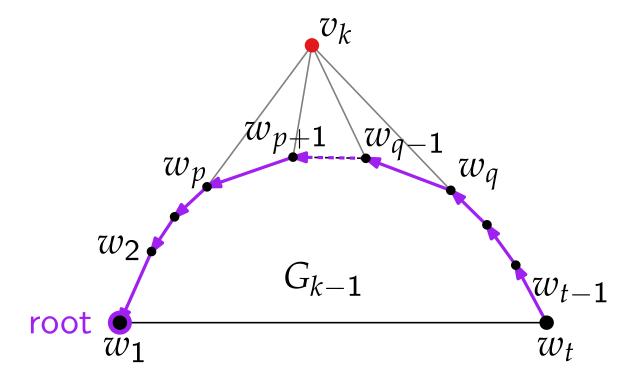


Idea:

- Instead of storing explicit x-coordinates, we store x differences.
- \blacksquare We need a spanning tree rooted at v_1

Outerface of G_{k-1}

• at
$$w_i$$
 store $\Delta x(w_i) = x(w_i) - x(w_{i-1})$



Idea:

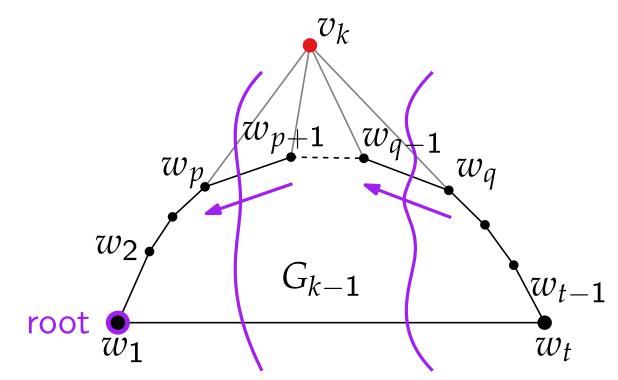
- Instead of storing explicit x-coordinates, we store x differences.
- \blacksquare We need a spanning tree rooted at v_1

Outerface of G_{k-1}

• at
$$w_i$$
 store $\Delta x(w_i) = x(w_i) - x(w_{i-1})$

Adding v_k

Shifting is performed by increasing $\Delta x(w_{p+1})$ and $\Delta x(w_q)$



Idea:

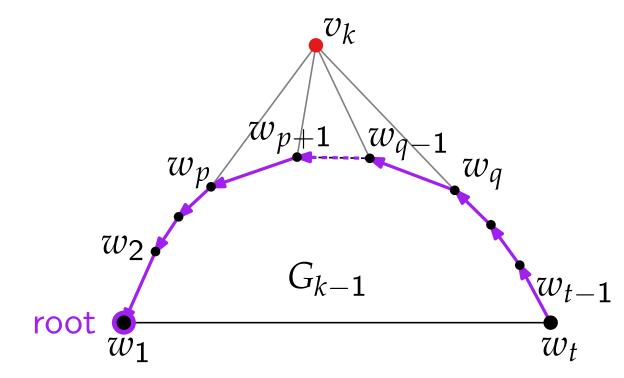
- Instead of storing explicit x-coordinates, we store x differences.
- We need a spanning tree rooted at v_1

Outerface of G_{k-1}

• at
$$w_i$$
 store $\Delta x(w_i) = x(w_i) - x(w_{i-1})$

Adding v_k

Shifting is performed by increasing $\Delta x(w_{p+1})$ and $\Delta x(w_q)$ $x(v_k)$ depends on $x(w_p)$ and $x(w_q)$



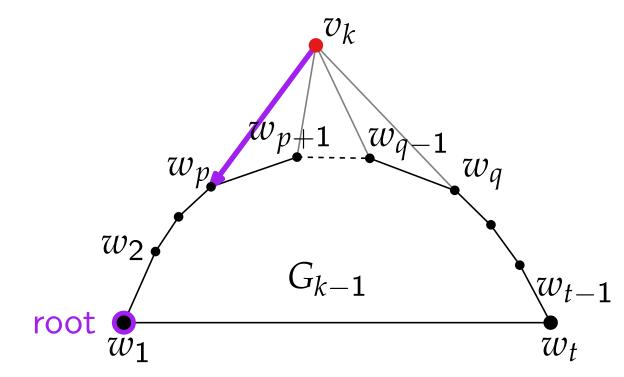
Idea:

- Instead of storing explicit x-coordinates, we store x differences.
- We need a spanning tree rooted at v_1

Outerface of G_{k-1}

• at
$$w_i$$
 store $\Delta x(w_i) = x(w_i) - x(w_{i-1})$

- Shifting is performed by increasing $\Delta x(w_{p+1})$ and $\Delta x(w_q)$ $x(v_k)$ depends on $x(w_p)$ and $x(w_q)$
- $x(v_k)$ as x difference from w_p



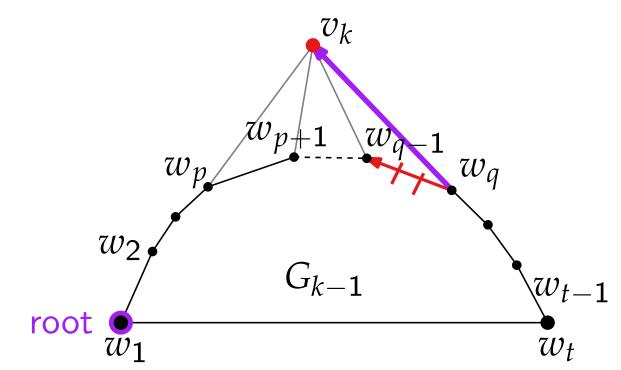
Idea:

- Instead of storing explicit x-coordinates, we store x differences.
- We need a spanning tree rooted at v_1

Outerface of G_{k-1}

• at
$$w_i$$
 store $\Delta x(w_i) = x(w_i) - x(w_{i-1})$

- Shifting is performed by increasing $\Delta x(w_{p+1})$ and $\Delta x(w_q)$ $x(v_k)$ depends on $x(w_p)$ and $x(w_q)$
- $x(v_k)$ as x difference from w_p
- $x(w_q)$ as x difference from v_k



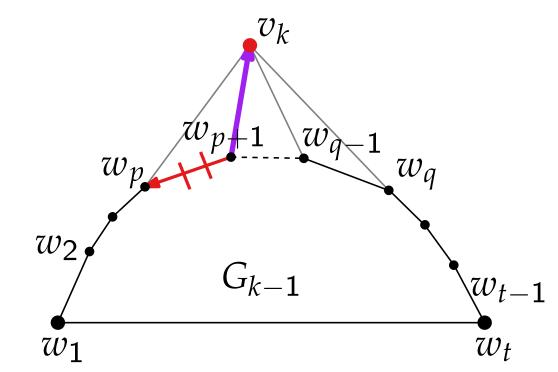
Idea:

- Instead of storing explicit x-coordinates, we store x differences.
- We need a spanning tree rooted at v_1

Outerface of G_{k-1}

• at
$$w_i$$
 store $\Delta x(w_i) = x(w_i) - x(w_{i-1})$

- Shifting is performed by increasing $\Delta x(w_{p+1})$ and $\Delta x(w_q)$
- $x(v_k)$ depends on $x(w_p)$ and $x(w_q)$
- $x(v_k)$ as x difference from w_p
- $x(w_q)$ as x difference from v_k
- w_{p+1} covered by v_k
 - $\rightarrow x(w_{p+1})$ as x difference from $x(v_k)$



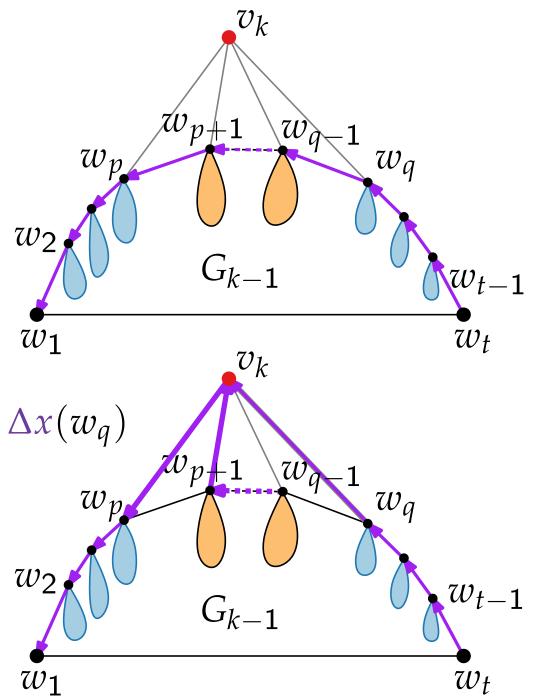
Idea:

- Instead of storing explicit x-coordinates, we store x differences.
- We need a spanning tree rooted at v_1

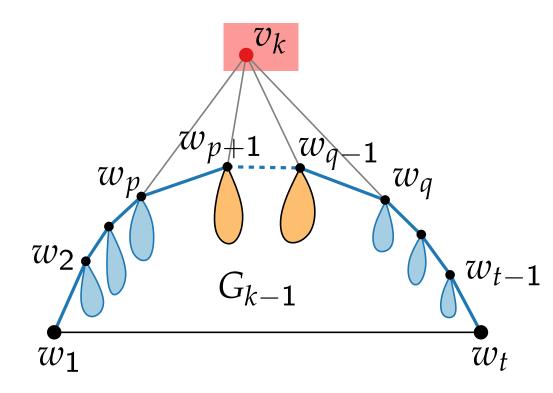
Outerface of G_{k-1}

• at
$$w_i$$
 store $\Delta x(w_i) = x(w_i) - x(w_{i-1})$

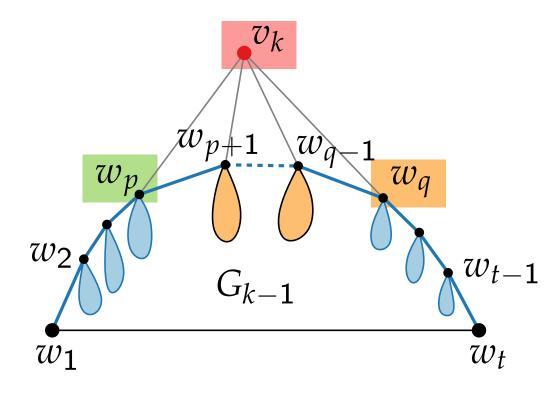
- Shifting is performed by increasing $\Delta x(w_{p+1})$ and $\Delta x(w_q)$ $x(w_q)$ depends on $x(w_q)$ and $x(w_q)$
- $x(v_k)$ depends on $x(w_p)$ and $x(w_q)$
- $x(v_k)$ as x difference from w_p
- $x(w_q)$ as x difference from v_k
- w_{p+1} covered by v_k $\rightarrow x(w_{p+1})$ as x difference from $x(v_k)$



Step 1. compute $x(v_k)$ and $y(v_k)$



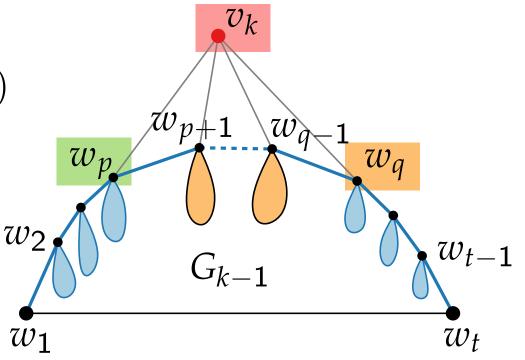
Step 1. compute $x(v_k)$ and $y(v_k)$



(1)
$$x(v_k) = \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) - y(w_p))$$

(2) $y(v_k) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) + y(w_p))$

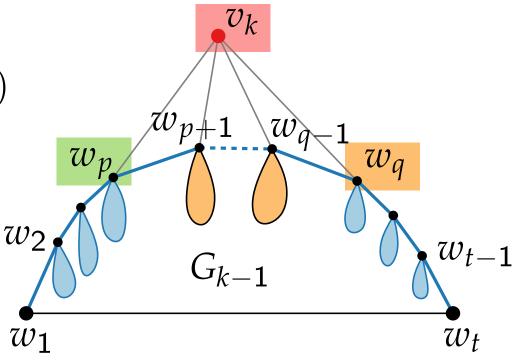
- **Step 1.** compute $x(v_k)$ and $y(v_k)$
- **Step 1 revised.** compute $x(v_k) x(w_p)$ and $y(v_k)$



(1)
$$x(v_k) = \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) - y(w_p))$$

(2) $y(v_k) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) + y(w_p))$

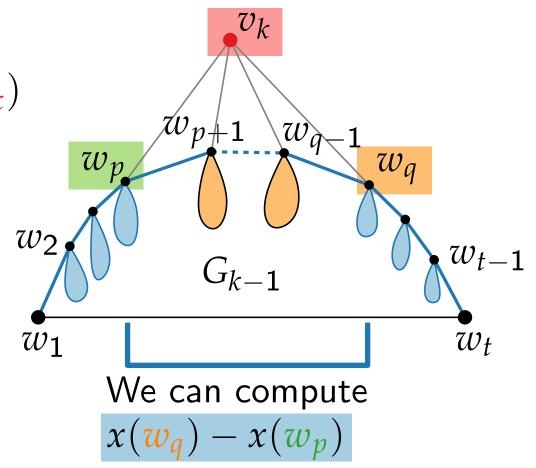
- **Step 1.** compute $x(v_k)$ and $y(v_k)$
- **Step 1 revised.** compute $x(v_k) x(w_p)$ and $y(v_k)$



(1)
$$x(v_k) = \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) - y(w_p))$$

(2) $y(v_k) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) + y(w_p))$
(3) $x(v_k) - x(w_p) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) - y(w_p))$

- **Step 1.** compute $x(v_k)$ and $y(v_k)$
- **Step 1 revised.** compute $x(v_k) x(w_p)$ and $y(v_k)$



(1)
$$x(v_k) = \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) - y(w_p))$$

(2) $y(v_k) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) + y(w_p))$
(3) $x(v_k) - x(w_p) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) - y(w_p))$

Step 1. computex(v_k) and y(v_k)
 Step 1 revised. compute x(v_k) − x(w_p) and y(v_k)
 Step 2- Calculations.
 ∆x(w_{p+1})++, ∆x(w_q)++

 v_k $w_{p \neq 1}$ \mathcal{W}_{q} w_q $\mathcal{W}_{\mathcal{D}}$ \mathcal{W} w_{t-1} G_{k-1} w_t w_1 We can compute $x(w_q) - x(w_p)$

(1)
$$x(v_k) = \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) - y(w_p))$$

(2) $y(v_k) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) + y(w_p))$
(3) $x(v_k) - x(w_p) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) - y(w_p))$

Step 1. compute $x(v_k)$ and $y(v_k)$ **Step 1 revised.** compute $x(v_k) - x(w_p)$ and $y(v_k)$ $w_{p \neq 1}$ \Wq **Step 2- Calculations.** $\mathcal{W}_{\mathcal{D}}$ w_q $\Delta x(w_{p+1}) + +, \Delta x(w_q) + +$ $= x(w_q) - x(w_p) = \Delta x(w_{p+1}) + \ldots + \Delta x(w_q)$ w_{2} w_{t-1} G_{k-1} w_1 w_t We can compute $x(w_q) - x(w_p)$

(1)
$$x(v_k) = \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) - y(w_p))$$

(2) $y(v_k) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) + y(w_p))$
(3) $x(v_k) - x(w_p) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) - y(w_p))$

Step 1. compute $x(v_k)$ and $y(v_k)$ **Step 1 revised.** compute $x(v_k) - x(w_p)$ and $y(v_k)$ w_{p+1} \Wq **Step 2- Calculations.** $\mathcal{W}_{\mathcal{D}}$ w_q $\Delta x(w_{p+1}) + +, \Delta x(w_q) + +$ $x(w_q) - x(w_p) = \Delta x(w_{p+1}) + \ldots + \Delta x(w_q)$ w_{γ} w_{t-1} G_{k-1} $\Delta x(v_k)$ by (3) w_1 \mathcal{W}_t We can compute $x(w_q) - x(w_p)$

(1)
$$x(v_k) = \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) - y(w_p))$$

(2) $y(v_k) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) + y(w_p))$
(3) $x(v_k) - x(w_p) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) - y(w_p))$

Step 1. compute $x(v_k)$ and $y(v_k)$ **Step 1 revised.** compute $x(v_k) - x(w_p)$ and $y(v_k)$ w_{p+1} VWq-**Step 2- Calculations.** $\mathcal{W}_{\mathcal{D}}$ w_q $\Delta x(w_{p+1}) + +, \Delta x(w_q) + +$ $x(w_q) - x(w_p) = \Delta x(w_{p+1}) + \ldots + \Delta x(w_q)$ W w_{t-1} G_{k-1} $\Delta x(v_k)$ by (3) $\Delta x(w_q) = x(w_q) - x(w_p) - \Delta x(v_k)$ w_1 We can compute $x(w_q) - x(w_p)$

(1)
$$x(v_k) = \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) - y(w_p))$$

(2) $y(v_k) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) + y(w_p))$
(3) $x(v_k) - x(w_p) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) - y(w_p))$

 \mathcal{W}_t

Step 1. compute $x(v_k)$ and $y(v_k)$ **Step 1 revised.** compute $x(v_k) - x(w_p)$ and $y(v_k)$ w_{p+1} Wg **Step 2- Calculations.** $\mathcal{W}_{\mathcal{V}}$ $\Delta x(w_{p+1}) + +, \Delta x(w_q) + +$ $= x(w_q) - x(w_p) = \Delta x(w_{p+1}) + \ldots + \Delta x(w_q)$ \mathcal{W} G_{k-1} $\Delta x(v_k)$ by (3) $\Delta x(w_q) = x(w_q) - x(w_p) - \Delta x(v_k)$ w_1 $\Delta x(w_{p+1}) = \Delta x(w_{p+1}) - \Delta x(v_k)$ We can compute $x(w_q) - x(w_p)$

(1)
$$x(v_k) = \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) - y(w_p))$$

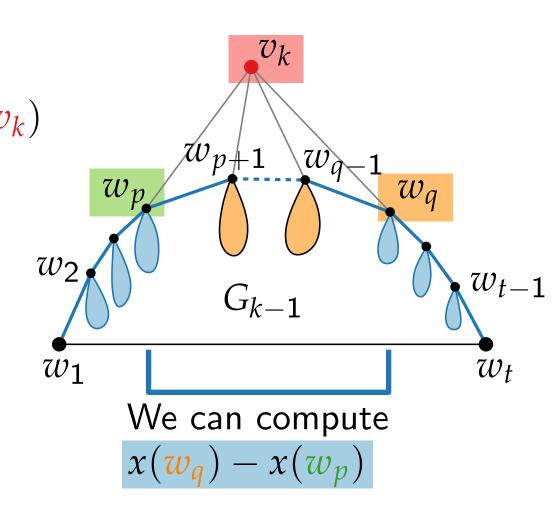
(2) $y(v_k) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) + y(w_p))$
(3) $x(v_k) - x(w_p) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) - y(w_p))$

 \mathcal{W}_{t-1}

 \mathcal{W}_t

 w_q

Step 1. compute $x(v_k)$ and $y(v_k)$ **Step 1 revised.** compute $x(v_k) - x(w_p)$ and $y(v_k)$ **Step 2- Calculations.** $\Delta x(w_{p+1}) + +, \Delta x(w_q) + +$ $= x(w_q) - x(w_p) = \Delta x(w_{p+1}) + \ldots + \Delta x(w_q)$ $\Delta x(v_k)$ by (3) $\Delta x(w_q) = x(w_q) - x(w_p) - \Delta x(v_k)$ $\Delta x(w_{p+1}) = \Delta x(w_{p+1}) - \Delta x(v_k)$ $y(v_k)$ by (2)



(1)
$$x(v_k) = \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) - y(w_p))$$

(2) $y(v_k) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) + y(w_p))$
(3) $x(v_k) - x(w_p) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) - y(w_p))$

Step 1. compute $x(v_k)$ and $y(v_k)$ **Step 1 revised.** compute $x(v_k) - x(w_p)$ and $y(v_k)$ **Step 2- Calculations.** $\mathcal{W}_{\mathcal{V}}$ $\Delta x(w_{p+1}) + +, \Delta x(w_q) + +$ $= x(w_q) - x(w_p) = \Delta x(w_{p+1}) + \ldots + \Delta x(w_q)$ W $\Delta x(v_k)$ by (3) $\Delta x(w_q) = x(w_q) - x(w_p) - \Delta x(v_k)$ w_1 $\Delta x(w_{p+1}) = \Delta x(w_{p+1}) - \Delta x(v_k)$ by (2) $\blacksquare y(v_k)$

 $w_{p \neq 1}$ Wg w_q w_{t-1} \mathcal{W}_t We can compute $x(w_q) - x(w_p)$

After v_n , use preorder traversal to compute *x*-coordinates

(1)
$$x(v_k) = \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) - y(w_p))$$

(2) $y(v_k) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) + y(w_p))$
(3) $x(v_k) - x(w_p) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) - y(w_p))$

Literature

[dFPP90] de Fraysseix, Pach, Pollack "How to draw a planar graph on a grid", Combinatorica, 1990