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Planar straight-line drawings

Theorem. [De Fraysseix, Pach, Pollack ’90]
Every n-vertex planar graph has a planar straight-line
drawing of size (2n − 4)× (n − 2).

Theorem. [Schnyder ’90] Every n-vertex planar graph has a
planar straight-line drawing of size (n − 2)× (n − 2).
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Planar straight-line drawings

Idea.
■ Fix outer triangle.
■ Compute coordinates of inner vertices

■ based on outer triangle
■ and how much space there has to be for

other vertices
■ using barycentric coordinates.

Theorem. [De Fraysseix, Pach, Pollack ’90]
Every n-vertex planar graph has a planar straight-line
drawing of size (2n − 4)× (n − 2).

Theorem. [Schnyder ’90] Every n-vertex planar graph has a
planar straight-line drawing of size (n − 2)× (n − 2).
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Planar straight-line drawings

Idea.
■ Fix outer triangle.
■ Compute coordinates of inner vertices

■ based on outer triangle
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Planar straight-line drawings

Idea.
■ Fix outer triangle.
■ Compute coordinates of inner vertices

■ based on outer triangle
■ and how much space there has to be for

other vertices
■ using barycentric coordinates.

Theorem. [De Fraysseix, Pach, Pollack ’90]
Every n-vertex planar graph has a planar straight-line
drawing of size (2n − 4)× (n − 2).

Theorem. [Schnyder ’90] Every n-vertex planar graph has a
planar straight-line drawing of size (n − 2)× (n − 2).
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(2n − 5)× (2n − 5)
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Barycentric coordinates

Definition.
Let A, B,C, P ∈ R2.
The barycentric coordinates of P with respect
to △ABC are a triple (α, β,γ) ∈ R3

≥0 such that
■ α + β + γ = 1
■ P = αA + βB + γC.
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Barycentric coordinates

A B

C

P

Definition.
Let A, B,C, P ∈ R2.
The barycentric coordinates of P with respect
to △ABC are a triple (α, β,γ) ∈ R3

≥0 such that
■ α + β + γ = 1
■ P = αA + βB + γC.
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Barycentric coordinates
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C
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(1, 0, 0)

P

Definition.
Let A, B,C, P ∈ R2.
The barycentric coordinates of P with respect
to △ABC are a triple (α, β,γ) ∈ R3

≥0 such that
■ α + β + γ = 1
■ P = αA + βB + γC.
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Barycentric coordinates

A B

C

(0, 0, 1)

(0, 1, 0)

(1, 0, 0)

P

Definition.
Let A, B,C, P ∈ R2.
The barycentric coordinates of P with respect
to △ABC are a triple (α, β,γ) ∈ R3

≥0 such that
■ α + β + γ = 1
■ P = αA + βB + γC.

α const.
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Barycentric coordinates

A B

C

(0, 0, 1)

(0, 1, 0)

(1, 0, 0)

P

Definition.
Let A, B,C, P ∈ R2.
The barycentric coordinates of P with respect
to △ABC are a triple (α, β,γ) ∈ R3

≥0 such that
■ α + β + γ = 1
■ P = αA + βB + γC.

α const.
β const.
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Barycentric coordinates

A B

C

(0, 0, 1)

(0, 1, 0)

(1, 0, 0)

P

Definition.
Let A, B,C, P ∈ R2.
The barycentric coordinates of P with respect
to △ABC are a triple (α, β,γ) ∈ R3

≥0 such that
■ α + β + γ = 1
■ P = αA + βB + γC.

α const.
β const.

γ const.
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Barycentric representation

Definition.
A barycentric representation of a graph G = (V, E) is an
assignment of barycentric coordinates to the vertices of G;
i.e. it is injective map ϕ : V → R3

≥0, v 7→ (v1, v2, v3) with
the following properties:
■ v1 + v2 + v3 = 1 for all v ∈ V
■ for each {x, y} ∈ E and each z ∈ V \ {x, y} there exists

k ∈ {1, 2, 3} with xk < zk and yk < zk.
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Barycentric representation
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Definition.
A barycentric representation of a graph G = (V, E) is an
assignment of barycentric coordinates to the vertices of G;
i.e. it is injective map ϕ : V → R3

≥0, v 7→ (v1, v2, v3) with
the following properties:
■ v1 + v2 + v3 = 1 for all v ∈ V
■ for each {x, y} ∈ E and each z ∈ V \ {x, y} there exists

k ∈ {1, 2, 3} with xk < zk and yk < zk.
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Barycentric representation
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Definition.
A barycentric representation of a graph G = (V, E) is an
assignment of barycentric coordinates to the vertices of G;
i.e. it is injective map ϕ : V → R3

≥0, v 7→ (v1, v2, v3) with
the following properties:
■ v1 + v2 + v3 = 1 for all v ∈ V
■ for each {x, y} ∈ E and each z ∈ V \ {x, y} there exists

k ∈ {1, 2, 3} with xk < zk and yk < zk.
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Barycentric representation
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Definition.
A barycentric representation of a graph G = (V, E) is an
assignment of barycentric coordinates to the vertices of G;
i.e. it is injective map ϕ : V → R3

≥0, v 7→ (v1, v2, v3) with
the following properties:
■ v1 + v2 + v3 = 1 for all v ∈ V
■ for each {x, y} ∈ E and each z ∈ V \ {x, y} there exists

k ∈ {1, 2, 3} with xk < zk and yk < zk.
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Barycentric representation

y

B

C

x
A

Definition.
A barycentric representation of a graph G = (V, E) is an
assignment of barycentric coordinates to the vertices of G;
i.e. it is injective map ϕ : V → R3

≥0, v 7→ (v1, v2, v3) with
the following properties:
■ v1 + v2 + v3 = 1 for all v ∈ V
■ for each {x, y} ∈ E and each z ∈ V \ {x, y} there exists

k ∈ {1, 2, 3} with xk < zk and yk < zk.

x1, y1 < z1
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Barycentric representation
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Definition.
A barycentric representation of a graph G = (V, E) is an
assignment of barycentric coordinates to the vertices of G;
i.e. it is injective map ϕ : V → R3

≥0, v 7→ (v1, v2, v3) with
the following properties:
■ v1 + v2 + v3 = 1 for all v ∈ V
■ for each {x, y} ∈ E and each z ∈ V \ {x, y} there exists

k ∈ {1, 2, 3} with xk < zk and yk < zk.

max{x2, y2}

x1, y1 < z1
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Barycentric representation
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Definition.
A barycentric representation of a graph G = (V, E) is an
assignment of barycentric coordinates to the vertices of G;
i.e. it is injective map ϕ : V → R3

≥0, v 7→ (v1, v2, v3) with
the following properties:
■ v1 + v2 + v3 = 1 for all v ∈ V
■ for each {x, y} ∈ E and each z ∈ V \ {x, y} there exists

k ∈ {1, 2, 3} with xk < zk and yk < zk.

x1, y1 < z1
x2, y2 < z2
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Barycentric representation
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Definition.
A barycentric representation of a graph G = (V, E) is an
assignment of barycentric coordinates to the vertices of G;
i.e. it is injective map ϕ : V → R3

≥0, v 7→ (v1, v2, v3) with
the following properties:
■ v1 + v2 + v3 = 1 for all v ∈ V
■ for each {x, y} ∈ E and each z ∈ V \ {x, y} there exists

k ∈ {1, 2, 3} with xk < zk and yk < zk.

max{x3, y3}
x1, y1 < z1

x2, y2 < z2
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Barycentric representation
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Definition.
A barycentric representation of a graph G = (V, E) is an
assignment of barycentric coordinates to the vertices of G;
i.e. it is injective map ϕ : V → R3

≥0, v 7→ (v1, v2, v3) with
the following properties:
■ v1 + v2 + v3 = 1 for all v ∈ V
■ for each {x, y} ∈ E and each z ∈ V \ {x, y} there exists

k ∈ {1, 2, 3} with xk < zk and yk < zk.

x1, y1 < z1
x2, y2 < z2

x3, y3 < z3
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Barycentric representation
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Definition.
A barycentric representation of a graph G = (V, E) is an
assignment of barycentric coordinates to the vertices of G;
i.e. it is injective map ϕ : V → R3

≥0, v 7→ (v1, v2, v3) with
the following properties:
■ v1 + v2 + v3 = 1 for all v ∈ V
■ for each {x, y} ∈ E and each z ∈ V \ {x, y} there exists

k ∈ {1, 2, 3} with xk < zk and yk < zk.

x1, y1 < z1
x2, y2 < z2

x3, y3 < z3
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Barycentric representation
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Definition.
A barycentric representation of a graph G = (V, E) is an
assignment of barycentric coordinates to the vertices of G;
i.e. it is injective map ϕ : V → R3

≥0, v 7→ (v1, v2, v3) with
the following properties:
■ v1 + v2 + v3 = 1 for all v ∈ V
■ for each {x, y} ∈ E and each z ∈ V \ {x, y} there exists

k ∈ {1, 2, 3} with xk < zk and yk < zk.
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Barycentric representations & planar graphs

Lemma.
Let ϕ : v 7→ (v1, v2, v3) be a barycentric representation of a
graph G = (V, E) and let A, B,C ∈ R2 in general position.
Then the mapping

f : v ∈ V 7→ v1A + v2B + v3C

gives a planar drawing of G inside △ABC.
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Barycentric representations & planar graphs

Lemma.
Let ϕ : v 7→ (v1, v2, v3) be a barycentric representation of a
graph G = (V, E) and let A, B,C ∈ R2 in general position.
Then the mapping

f : v ∈ V 7→ v1A + v2B + v3C

gives a planar drawing of G inside △ABC.

C

v

Proof. ■ No vertices occur “inside” an edge

BA

u
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Barycentric representations & planar graphs

Lemma.
Let ϕ : v 7→ (v1, v2, v3) be a barycentric representation of a
graph G = (V, E) and let A, B,C ∈ R2 in general position.
Then the mapping

f : v ∈ V 7→ v1A + v2B + v3C

gives a planar drawing of G inside △ABC.

C

v

■ No pair of edges {u, v} and {u′, v′} cross:
u′

v′

Proof. ■ No vertices occur “inside” an edge

BA

u
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Barycentric representations & planar graphs
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Barycentric representations & planar graphs

Lemma.
Let ϕ : v 7→ (v1, v2, v3) be a barycentric representation of a
graph G = (V, E) and let A, B,C ∈ R2 in general position.
Then the mapping

f : v ∈ V 7→ v1A + v2B + v3C

gives a planar drawing of G inside △ABC.

C

v

■ No pair of edges {u, v} and {u′, v′} cross:
u′

v′

u′
i > ui, vi v′j > uj, vj uk > u′

k, v′k vl > u′
l, v′l

Proof. ■ No vertices occur “inside” an edge

BA

u
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Barycentric representations & planar graphs

Lemma.
Let ϕ : v 7→ (v1, v2, v3) be a barycentric representation of a
graph G = (V, E) and let A, B,C ∈ R2 in general position.
Then the mapping

f : v ∈ V 7→ v1A + v2B + v3C

gives a planar drawing of G inside △ABC.

C

v

■ No pair of edges {u, v} and {u′, v′} cross:
u′

v′

u′
i > ui, vi v′j > uj, vj uk > u′

k, v′k vl > u′
l, v′l

⇒ {i, j} ∩ {k, l} = ∅

wlog i = j = 1 ⇒ u′
1, v′1 > u1, v1

Proof. ■ No vertices occur “inside” an edge

BA

u
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Barycentric representations & planar graphs

Lemma.
Let ϕ : v 7→ (v1, v2, v3) be a barycentric representation of a
graph G = (V, E) and let A, B,C ∈ R2 in general position.
Then the mapping

f : v ∈ V 7→ v1A + v2B + v3C

gives a planar drawing of G inside △ABC.

C

v

■ No pair of edges {u, v} and {u′, v′} cross:
u′

v′

u′
i > ui, vi v′j > uj, vj uk > u′

k, v′k vl > u′
l, v′l

⇒ {i, j} ∩ {k, l} = ∅

wlog i = j = 1 ⇒ u′
1, v′1 > u1, v1 ⇒ separated by straight line

Proof. ■ No vertices occur “inside” an edge

BA z1 > u1, v1

u



5 - 8

Barycentric representations & planar graphs

Lemma.
Let ϕ : v 7→ (v1, v2, v3) be a barycentric representation of a
graph G = (V, E) and let A, B,C ∈ R2 in general position.
Then the mapping

f : v ∈ V 7→ v1A + v2B + v3C

gives a planar drawing of G inside △ABC.

C

v

■ No pair of edges {u, v} and {u′, v′} cross:
u′

v′

u′
i > ui, vi v′j > uj, vj uk > u′

k, v′k vl > u′
l, v′l

⇒ {i, j} ∩ {k, l} = ∅

wlog i = j = 1 ⇒ u′
1, v′1 > u1, v1 ⇒ separated by straight line

How to get vertices
on grid?

Proof. ■ No vertices occur “inside” an edge

BA z1 > u1, v1

u
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Angle labeling

C

BA

Observation 1.
Let v 7→ (v1, v2, v3) be a barycentric representation of a
triangulated plane graph G = (V, E).
We can uniquely label each angle ∠(xy, xz) with
k ∈ {1, 2, 3}.

x
y

z
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Angle labeling

x1 > y1, z1
y2 > x2, z2
z3 > x3, y3

C

BA

Observation 1.
Let v 7→ (v1, v2, v3) be a barycentric representation of a
triangulated plane graph G = (V, E).
We can uniquely label each angle ∠(xy, xz) with
k ∈ {1, 2, 3}.

x
y

z
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Angle labeling

x1 > y1, z1
y2 > x2, z2
z3 > x3, y3
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BA

Observation 1.
Let v 7→ (v1, v2, v3) be a barycentric representation of a
triangulated plane graph G = (V, E).
We can uniquely label each angle ∠(xy, xz) with
k ∈ {1, 2, 3}.
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Angle labeling

x1 > y1, z1
y2 > x2, z2
z3 > x3, y3

C

BA

Observation 1.
Let v 7→ (v1, v2, v3) be a barycentric representation of a
triangulated plane graph G = (V, E).
We can uniquely label each angle ∠(xy, xz) with
k ∈ {1, 2, 3}.

x
y

z
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Angle labeling

3

2
1

x1 > y1, z1
y2 > x2, z2
z3 > x3, y3

C

BA

Observation 1.
Let v 7→ (v1, v2, v3) be a barycentric representation of a
triangulated plane graph G = (V, E).
We can uniquely label each angle ∠(xy, xz) with
k ∈ {1, 2, 3}.

x
y

z
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Angle labeling

Observation 2.
Let v 7→ (v1, v2, v3) be a barycentric representation of a
triangulated plane graph G = (V, E).
Around a vertex:
■ all angles with label i are consecutive
■ all three angles appear
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Angle labeling

Observation 2.
Let v 7→ (v1, v2, v3) be a barycentric representation of a
triangulated plane graph G = (V, E).
Around a vertex:
■ all angles with label i are consecutive
■ all three angles appear
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Angle labeling

Observation 2.
Let v 7→ (v1, v2, v3) be a barycentric representation of a
triangulated plane graph G = (V, E).
Around a vertex:
■ all angles with label i are consecutive
■ all three angles appear
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Angle labeling

Observation 2.
Let v 7→ (v1, v2, v3) be a barycentric representation of a
triangulated plane graph G = (V, E).
Around a vertex:
■ all angles with label i are consecutive
■ all three angles appear

B

C

A
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2
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Angle labeling

Observation 2.
Let v 7→ (v1, v2, v3) be a barycentric representation of a
triangulated plane graph G = (V, E).
Around a vertex:
■ all angles with label i are consecutive
■ all three angles appear

B

C

A
3

3
3
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Angle labeling

Observation 2.
Let v 7→ (v1, v2, v3) be a barycentric representation of a
triangulated plane graph G = (V, E).
Around a vertex:
■ all angles with label i are consecutive
■ all three angles appear

B

C

A

1

1
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Schnyder labeling

Definition.
A Schnyder labeling (normal labeling) of a triangulated plane graph G is a
labeling of all internal angles with labels 1, 2 and 3 such that:

Faces Each internal face contain vertices with all three labels 1, 2 and 3
appearing in a counterclockwise order.

Vertices The ccw order of labels around each vertex consists of a nonempty
interval of 1’s followed by a nonempty interval of 2’s followed by a nonempty
interval of 3’s.
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Schnyder labeling

Definition.
A Schnyder labeling (normal labeling) of a triangulated plane graph G is a
labeling of all internal angles with labels 1, 2 and 3 such that:

Faces Each internal face contain vertices with all three labels 1, 2 and 3
appearing in a counterclockwise order.

Vertices The ccw order of labels around each vertex consists of a nonempty
interval of 1’s followed by a nonempty interval of 2’s followed by a nonempty
interval of 3’s.
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Schnyder labeling

Definition.
A Schnyder labeling (normal labeling) of a triangulated plane graph G is a
labeling of all internal angles with labels 1, 2 and 3 such that:

Faces Each internal face contain vertices with all three labels 1, 2 and 3
appearing in a counterclockwise order.

Vertices The ccw order of labels around each vertex consists of a nonempty
interval of 1’s followed by a nonempty interval of 2’s followed by a nonempty
interval of 3’s.
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Schnyder labeling-example

b c

a
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Schnyder labeling-example
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Schnyder labeling-example
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Schnyder labeling-example
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Schnyder labeling-example
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Schnyder labeling-example
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a
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Schnyder labeling-example

b c

a
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Schnyder labeling-example

b c

a
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Schnyder labeling-example

1
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a
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Schnyder realiser

■ Schnyder labeling induces an edge labeling

2
2
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Schnyder realiser

■ Schnyder labeling induces an edge labeling
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Schnyder realiser

■ Schnyder labeling induces an edge labeling
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Schnyder realiser

■ Schnyder labeling induces an edge labeling
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Schnyder realiser

■ Schnyder labeling induces an edge labeling
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Schnyder realiser
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Schnyder realiser

■ Schnyder labeling induces an edge labeling
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Schnyder realiser

■ Schnyder labeling induces an edge labeling
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Schnyder realiser

■ Schnyder labeling induces an edge labeling
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Schnyder realiser

■ Schnyder labeling induces an edge labeling
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Schnyder realiser

T1 T2

T3

■ Schnyder labeling induces an edge labeling

21
3 2

2

Definition.
A Schnyder forest or realiser of a triangulated plane graph G = (V, E) is a
partition of the inner edges of E into three sets of oriented edges T1, T2, T3
such that for each inner vertex v ∈ V holds:

■ v has one outgoing edge in each of T1, T2, and T3.

■ The ccw order of edges around v is: leaving in T1, entering in T3, leaving in
T2, entering in T1, leaving in T3, entering in T2.

1

1

1

2

2

2

3

33
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Schnyder realiser – existence

Lemma. [Kampen 1976]
Let G be a triangulated plane graph with vertices a, b, c on the
outer face. There exists a contractible edge {a, x} in G, x ̸= b, c.
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Schnyder realiser – existence

Lemma. [Kampen 1976]
Let G be a triangulated plane graph with vertices a, b, c on the
outer face. There exists a contractible edge {a, x} in G, x ̸= b, c.

Definition.
Edge {a, x} , where x ̸= b, c, is a contractible edge in G, if

■ a and x have exactly 2 common neighbors
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Schnyder realiser – existence

a

Lemma. [Kampen 1976]
Let G be a triangulated plane graph with vertices a, b, c on the
outer face. There exists a contractible edge {a, x} in G, x ̸= b, c.

Definition.
Edge {a, x} , where x ̸= b, c, is a contractible edge in G, if

■ a and x have exactly 2 common neighbors

b

c
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Schnyder realiser – existence

a

Lemma. [Kampen 1976]
Let G be a triangulated plane graph with vertices a, b, c on the
outer face. There exists a contractible edge {a, x} in G, x ̸= b, c.

Definition.
Edge {a, x} , where x ̸= b, c, is a contractible edge in G, if

■ a and x have exactly 2 common neighbors

b

c

b

c

■ Neighbors of a induce an
outerplanar graph
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a

Lemma. [Kampen 1976]
Let G be a triangulated plane graph with vertices a, b, c on the
outer face. There exists a contractible edge {a, x} in G, x ̸= b, c.

Definition.
Edge {a, x} , where x ̸= b, c, is a contractible edge in G, if

■ a and x have exactly 2 common neighbors

b

c

b

c

■ Neighbors of a induce an
outerplanar graph

■ There exists x ̸= b, c with
degree 2x
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Let G be a triangulated plane graph with vertices a, b, c on the
outer face. There exists a contractible edge {a, x} in G, x ̸= b, c.
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Lemma. [Kampen 1976]
Let G be a triangulated plane graph with vertices a, b, c on the
outer face. There exists a contractible edge {a, x} in G, x ̸= b, c.

a and x must have
exactly 2 common

neighbors

Theorem.
Every triangulated plane graph has a Schnyder labeling.
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Lemma. [Kampen 1976]
Let G be a triangulated plane graph with vertices a, b, c on the
outer face. There exists a contractible edge {a, x} in G, x ̸= b, c.

Theorem.
Every triangulated plane graph has a Schnyder labeling.

Proof by induction on # vertices via edge contractions.
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Schnyder realiser – existence

Lemma. [Kampen 1976]
Let G be a triangulated plane graph with vertices a, b, c on the
outer face. There exists a contractible edge {a, x} in G, x ̸= b, c.

Theorem.
Every triangulated plane graph has a Schnyder labeling.

Proof also gives an algorithm to produce a Schnyder labeling.
It can be implemented in O(n) time . . . as exercise.
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Schnyder realiser – existence

Lemma. [Kampen 1976]
Let G be a triangulated plane graph with vertices a, b, c on the
outer face. There exists a contractible edge {a, x} in G, x ̸= b, c.

Theorem.
Every triangulated plane graph has a Schnyder labeling.

Proof also gives an algorithm to produce a Schnyder labeling.
It can be implemented in O(n) time . . . as exercise.

Corollary.
Every triangulated plane graph has a Schnyder realiser.

Theorem and previous construction imply:
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Schnyder realiser – properties

c

ba

■ For each v there exists a
directed red, blue, green path
from v to a, b, c, respectively.

■ No monochromatix cycle exists

■ Each monochromatic subgraph
is a tree!

■ The sinks of red/blue/green
trees are the vertices a, b, c.
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Schnyder realiser – properties

c

ba

■ For each v there exists a
directed red, blue, green path
from v to a, b, c, respectively.

■ No monochromatix cycle exists

■ Each monochromatic subgraph
is a tree!

■ The sinks of red/blue/green
trees are the vertices a, b, c.

This is ensured by construction via
contraction operation.
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Schnyder realiser – canonical order

v1 v2

vk+1

Adding vk+1 to graph Gk
■ vk+1wp ∈ T1
■ vk+1wq ∈ T2
■ wjvk+1 ∈ T3

wp wq

wp+1 wq−1
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Schnyder drawing

T1 T2

T3

f : v ∈ V 7→ v1A + v2B + v3C

■ How to get from Schnyder realiser to
barycentric representation
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■ Pi(v) path from v to source of Ti
■ R1(v), R2(v), R3(v) are sets of faces
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■ Paths P1(v), P2(v), P3(v) cross only at
vertex v.

■ For inner vertices u ̸= v it holds that
u ∈ Ri(v) ⇒ Ri(u) ⊊ Ri(v).
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Schnyder drawing

■ Let barycentric coordinates of v ∈ G \ {a, b, c}
be (v1, v2, v3), where v1 = |R1(v)|/(2n − 5),
v2 = |R2(v)|/(2n − 5) and v3 = |R3(v)|/(2n − 5).

■ Set
■ A = (2n − 5, 0)
■ B = (0, 2n − 5)
■ C = (0, 0)
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The mapping
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Weak barycentric representation

Definition.
A weak barycentric representation of a graph G = (V, E)
is an injective map v ∈ V 7→ (v1, v2, v3) ∈ R3 with the
following properties:
■ v1 + v2 + v3 = 1 for every v ∈ V
■ for every {x, y} ∈ E and every z ∈ V \ {x, y} there is

k ∈ {1, 2, 3} with (xk, xk+1) <lex (zk, zk+1) and
(yk, yk+1) <lex (zk, zk+1).
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Weak barycentric representation

A weak barycentric representation
still provides a planar drawing.

Proof is similar to before.. and thus an exercise.

i.e., either yk < zk or
yk = zk and yk+1 < zk+1

Definition.
A weak barycentric representation of a graph G = (V, E)
is an injective map v ∈ V 7→ (v1, v2, v3) ∈ R3 with the
following properties:
■ v1 + v2 + v3 = 1 for every v ∈ V
■ for every {x, y} ∈ E and every z ∈ V \ {x, y} there is

k ∈ {1, 2, 3} with (xk, xk+1) <lex (zk, zk+1) and
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■ Set v′i = |V(Ri(v))| − |Pi−1(v)| c
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New barycentric coordinates

3

1 21

vR2

R3

R1

■ Set v′i = |V(Ri(v))| − |Pi−1(v)| c

a b
P1

P3

P2

■ Additionally, for outer vertices set
■ a′1 = n − 2
■ a′2 = 1
■ a′3 = 0
and analogously for b′ and c′
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′
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Schnyder drawing

Theorem.
The mapping

f : v 7→ 1
n−1 (v

′
1, v′2, v′3)

is a weak barycentric represenation of G.
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Schnyder drawing

Remarks.
■ By setting A = (n − 1, 0), B = (0, n − 1), C = (0, 0),

one obtains a planar straight-line drawing of G on an
(n − 2)× (n − 2) grid.

■ To calculate all the coordinates, a constant number of
tree traversals are enough.

Theorem.
The mapping

f : v 7→ 1
n−1 (v

′
1, v′2, v′3)

is a weak barycentric represenation of G.
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Calculations

Compute:
■ pi(v) = |Pi(v)| vertices on i-path from v
■ ti(v) = |Ti(v)| vertices on i-subtree rooted at v
■ ri(v) = |V(Ri(v))| vertices in Ri(v)
■ v′i = |V(Ri(v))| − |Pi−1(v)| i-coordinate of v

v

c

a b
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■ pi(v) preorder
■ ti(v) postorder

■ ptj
i(v) = ∑

u∈Pj(v)
ti(u) preorder

■ ri(v) = pti−1
i (v) + pti+1

i (v)− ti(v)
■ v′i = ri(v)− pi−1(v) R3
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