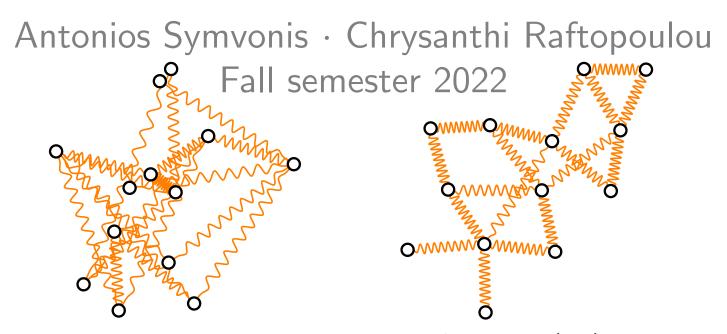
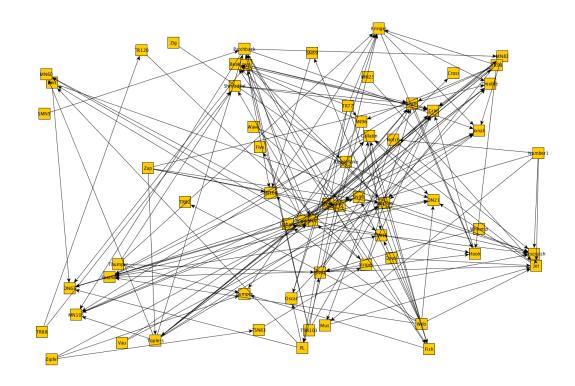
Visualization of graphs Force-directed algorithms Drawing with physical analogies



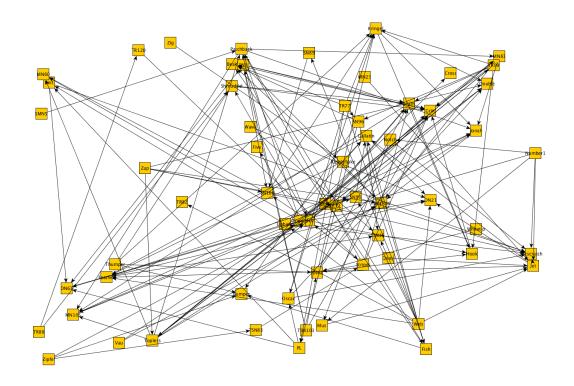
The original slides of this presentation were created by researchers at Karlsruhe Institute of Technology (KIT), TU Wien, U Wuerzburg, U Konstanz, ... The original presentation was modified/updated by A. Symvonis and C. Raftopoulou

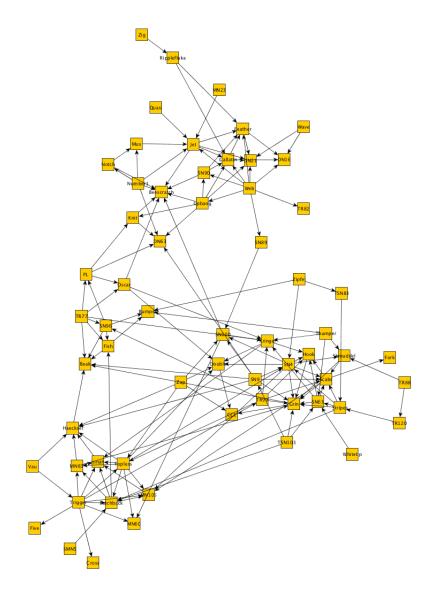
Input: Graph G = (V, E)



Input: Graph G = (V, E)

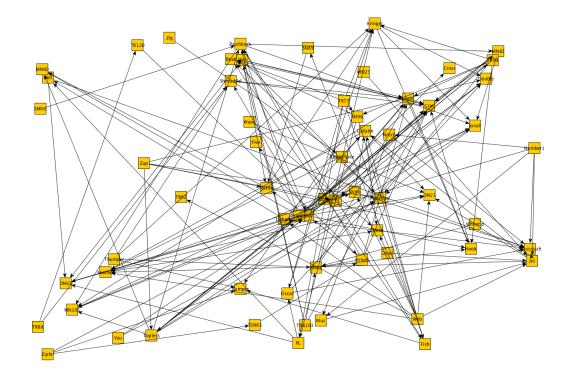
Output: Clear and readable straight-line drawing of G



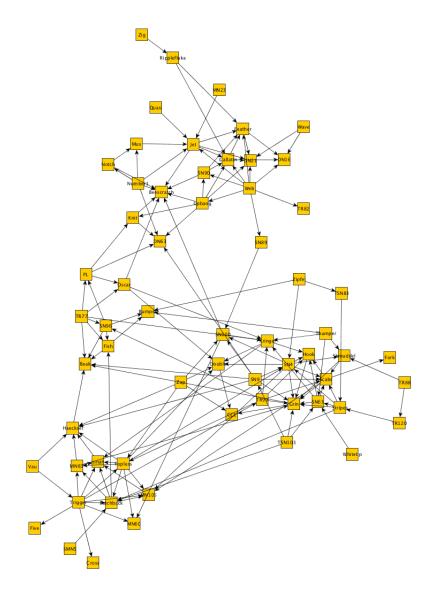


Input: Graph G = (V, E)

Output: Clear and readable straight-line drawing of G



Which aesthetic criteria would you optimize?

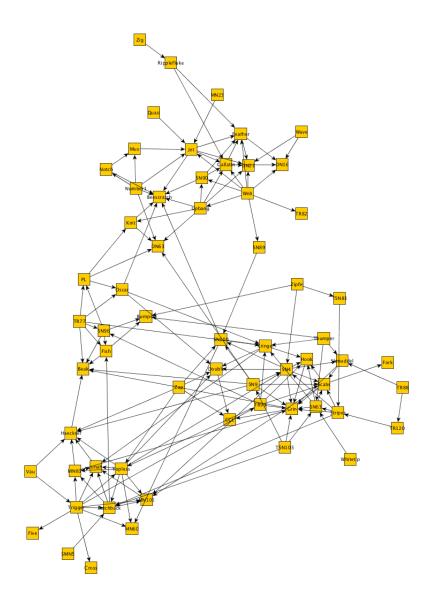


Input: Graph G = (V, E)

Output: Clear and readable straight-line drawing of G

Aesthetic criteria:

- adjacent vertices are close
- non-adjacent vertices are far apart
- edges short, straight-line, similar length
- densely connected parts (clusters) form communities
- as few crossings as possible
- nodes distributed evenly



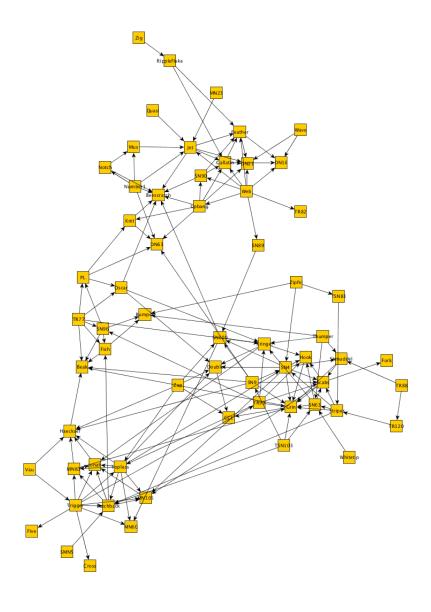
Input: Graph G = (V, E)

Output: Clear and readable straight-line drawing of G

Aesthetic criteria:

- adjacent vertices are close
- non-adjacent vertices are far apart
- edges short, straight-line, similar length
- densely connected parts (clusters) form communities
- as few crossings as possible
- nodes distributed evenly

Optimization criteria partially contradict each other



Fixed edge lengths?

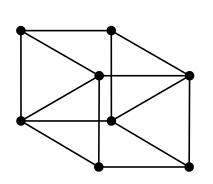
Input: Graph G = (V, E), required edge length $\ell(e)$, $\forall e \in E$

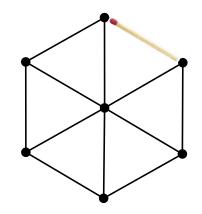
Output: Drawing of G which realizes all the edge lengths

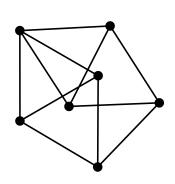
Fixed edge lengths?

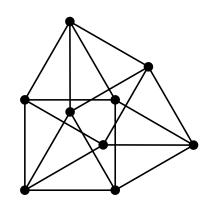
Input: Graph G = (V, E), required edge length $\ell(e)$, $\forall e \in E$

Output: Drawing of G which realizes all the edge lengths





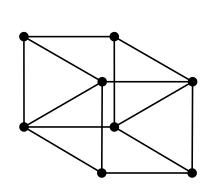


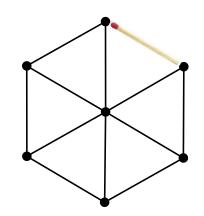


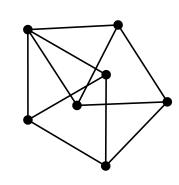
Fixed edge lengths?

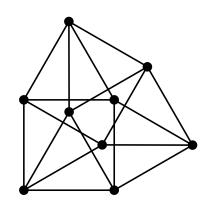
Input: Graph G = (V, E), required edge length $\ell(e)$, $\forall e \in E$

Output: Drawing of G which realizes all the edge lengths









NP-hard for

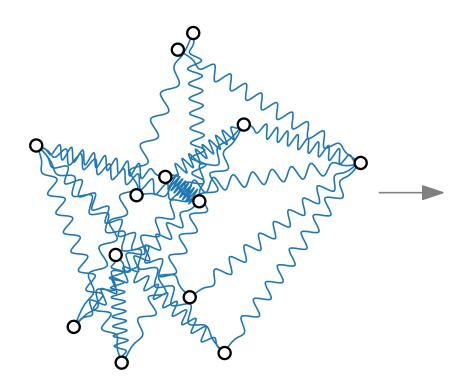
- uniform edge lengths in any dimension [Johnson '82]
- uniform edge lengths in planar drawings [Eades, Wormald '90]
- \blacksquare edge lengths $\{1, 2\}$ [Saxe '80]

Idea 1.

"To embed a graph we replace the vertices by steel rings and replace each edge with a spring to form a mechanical system . . . The vertices are placed in some initial layout

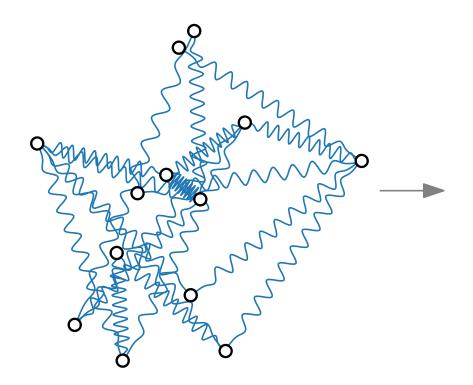
Idea 1.

"To embed a graph we replace the vertices by steel rings and replace each edge with a spring to form a mechanical system . . . The vertices are placed in some initial layout



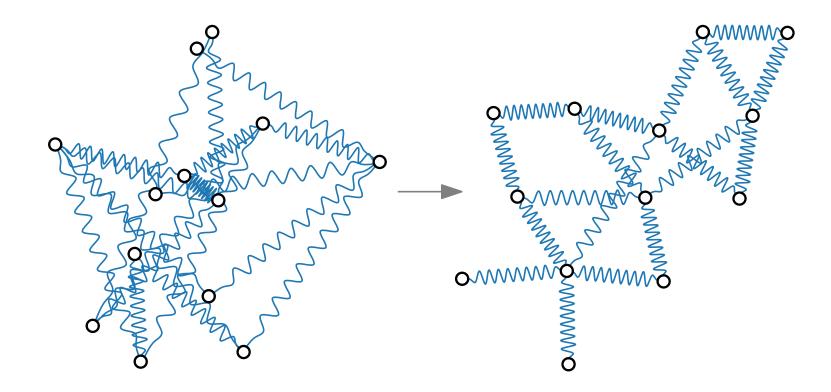
Idea 1.

"To embed a graph we replace the vertices by steel rings and replace each edge with a spring to form a mechanical system . . . The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state." [Eades '84]



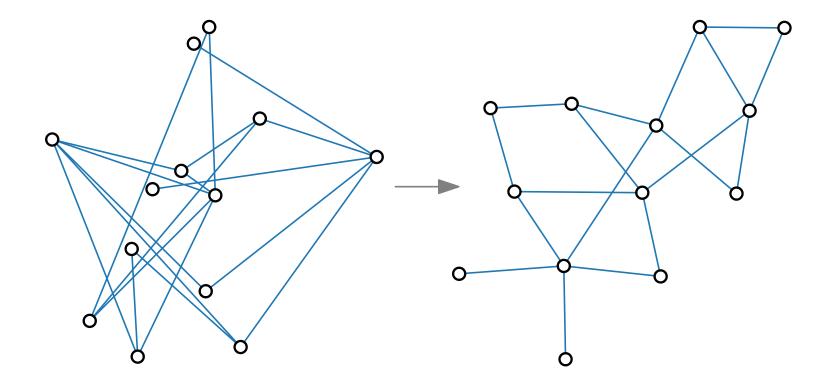
Idea 1.

"To embed a graph we replace the vertices by steel rings and replace each edge with a spring to form a mechanical system . . . The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state." [Eades '84]



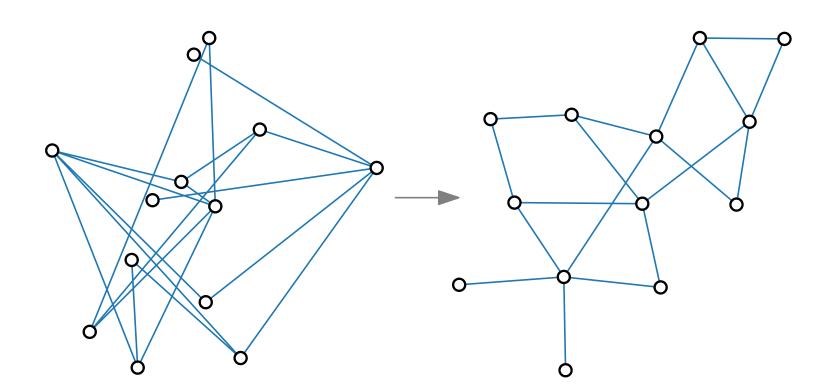
Idea 1.

"To embed a graph we replace the vertices by steel rings and replace each edge with a spring to form a mechanical system . . . The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state." [Eades '84]



Idea 1.

"To embed a graph we replace the vertices by steel rings and replace each edge with a spring to form a mechanical system . . . The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state." [Eades '84]

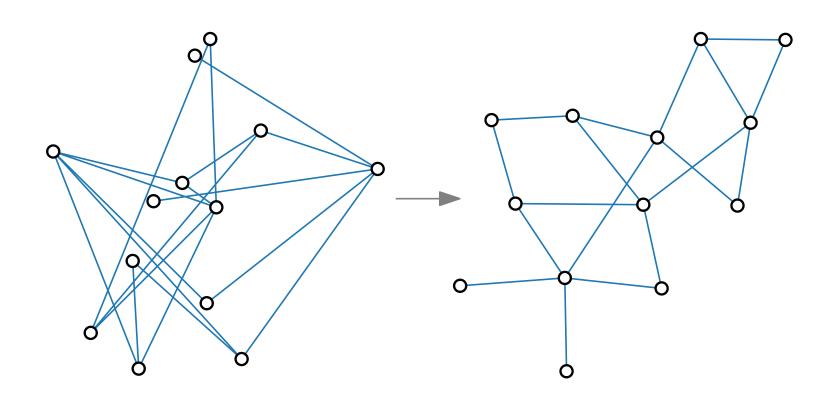


 \blacksquare adjacent vertices u and v:

 $u \circ f_{\text{spring}}$

Idea 1.

"To embed a graph we replace the vertices by steel rings and replace each edge with a spring to form a mechanical system . . . The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state." [Eades '84]



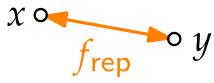
 \blacksquare adjacent vertices u and v:

$$u \circ f_{\text{spring}}$$

Idea 2.

Repulsive forces.

 \blacksquare non-adjacent vertices x and y:



Idea 1.

"To embed a graph we replace the vertices by steel rings and replace each edge with a spring to form a mechanical system . . . The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state." [Eades '84]

So-called **spring-embedder** algorithms that work according to this or similar principles are among the most frequently used graph-drawing methods in practice.

 \blacksquare adjacent vertices u and v:

$$u \circ f_{\text{spring}}$$

Idea 2.

Repulsive forces.

 \blacksquare non-adjacent vertices x and y:

Outline

- Spring Embedder by Eades
- Variation by Fruchterman & Reingold
- Ways to speed up computation
- Alternative multidimensional scaling for large graphs

SpringEmbedder(
$$G = (V, E)$$
, $p = (p_v)_{v \in V}$, $\varepsilon > 0$, $K \in \mathbb{N}$)

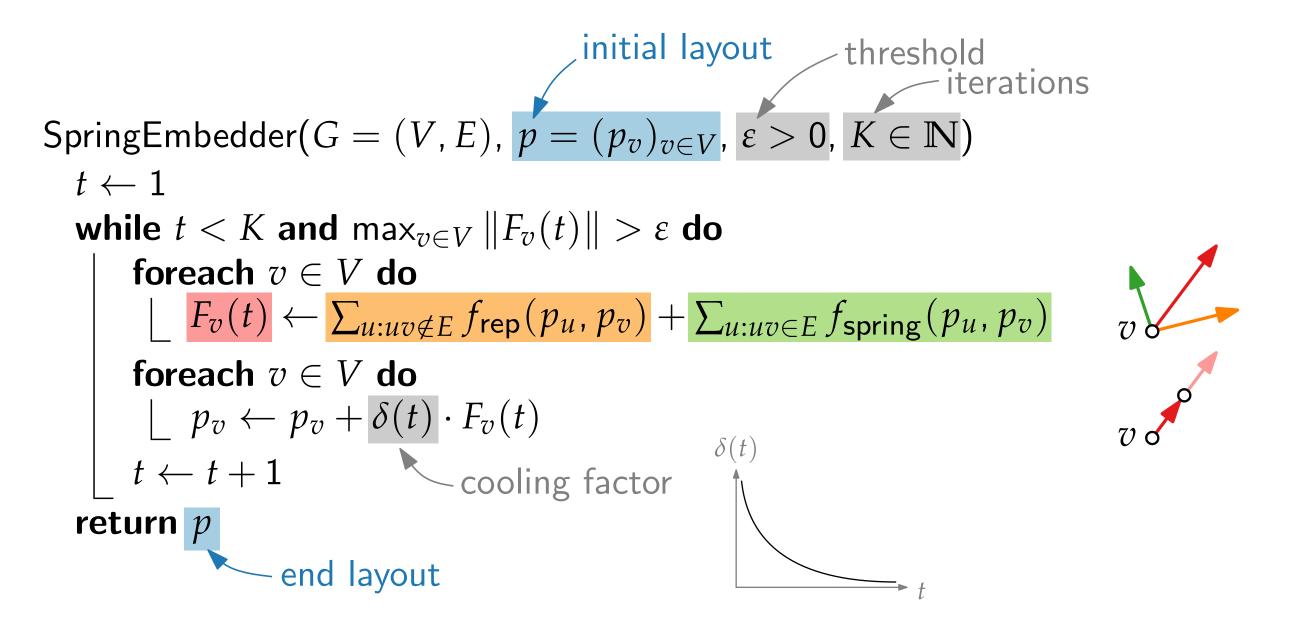
return p

return p


```
t \leftarrow 1
 while t < K and \max_{v \in V} ||F_v(t)|| > \varepsilon do
 return p
          end layout
```

```
t \leftarrow 1
 while t < K and \max_{v \in V} ||F_v(t)|| > \varepsilon do
   foreach v \in V do
   return p
       end layout
```

```
t \leftarrow 1
  while t < K and \max_{v \in V} ||F_v(t)|| > \varepsilon do
      foreach v \in V do
         F_v(t) \leftarrow \sum_{u:uv \notin E} f_{\mathsf{rep}}(p_u, p_v) + \sum_{u:uv \in E} f_{\mathsf{spring}}(p_u, p_v)
     foreach v \in V do
     return p
               end layout
```



- $\ell = \ell(e) = \text{ideal spring}$ lenght for edge e
- $p_v = position of vertex v$
- $||p_u p_v|| =$ Euclidean distance between u and v
- $\overrightarrow{p_u p_v} = \text{unit vector}$ pointing from u to v

lacktriangleright repulsive force between two non-adjacent vertices u and v

$$f_{\text{rep}}(p_u, p_v) = \frac{c_{\text{rep}}}{||p_v - p_u||^2} \cdot \overrightarrow{p_u p_v}$$

lacksquare attractive force between adjacent vertices u and v

$$f_{\mathsf{spring}}(p_u, p_v) = c_{\mathsf{spring}} \cdot \log \frac{||p_u - p_v||}{\ell} \cdot \overrightarrow{p_v p_u}$$

 \blacksquare resulting displacement vector for node v

$$F_v = \sum_{u:\{u,v\}\notin E} f_{\text{rep}}(p_u, p_v) + \sum_{u:\{u,v\}\in E} f_{\text{spring}}(p_u, p_v)$$

- $\ell = \ell(e) = \text{ideal spring}$ lenght for edge e
- $ho_v = position of vertex v$
- $||p_u p_v|| =$ Euclidean distance between u and v
- $\overrightarrow{p_u p_v} = \text{unit vector}$ pointing from u to v

repulsive force between two non-adjacent vertices u and v repulsion constant (e.g. 1.0) $f_{\text{rep}}(p_u, p_v) = \frac{c_{\text{rep}}}{||p_v - p_u||^2} \cdot \overline{p_u p_v}$

attractive force between adjacent vertices u and v

$$f_{\text{spring}}(p_u, p_v) = c_{\text{spring}} \cdot \log \frac{||p_u - p_v||}{\ell} \cdot \overrightarrow{p_v p_u}$$

lacktriangleright resulting displacement vector for node v

$$F_v = \sum_{u:\{u,v\}\notin E} f_{\text{rep}}(p_u, p_v) + \sum_{u:\{u,v\}\in E} f_{\text{spring}}(p_u, p_v)$$

- $\ell = \ell(e) = \text{ideal spring}$ lenght for edge e
- $p_v = position of vertex v$
- $||p_u p_v|| =$ Euclidean distance between u and v
- $\overrightarrow{p_u p_v} = \text{unit vector}$ pointing from u to v

repulsive force between two non-adjacent vertices u and v repulsion constant (e.g. 1.0)

$$f_{\text{rep}}(p_u, p_v) = \frac{c_{\text{rep}}}{||p_v - p_u||^2} \cdot \overrightarrow{p_u p_v}$$

lacktriangleright attractive force between adjacent vertices u and v

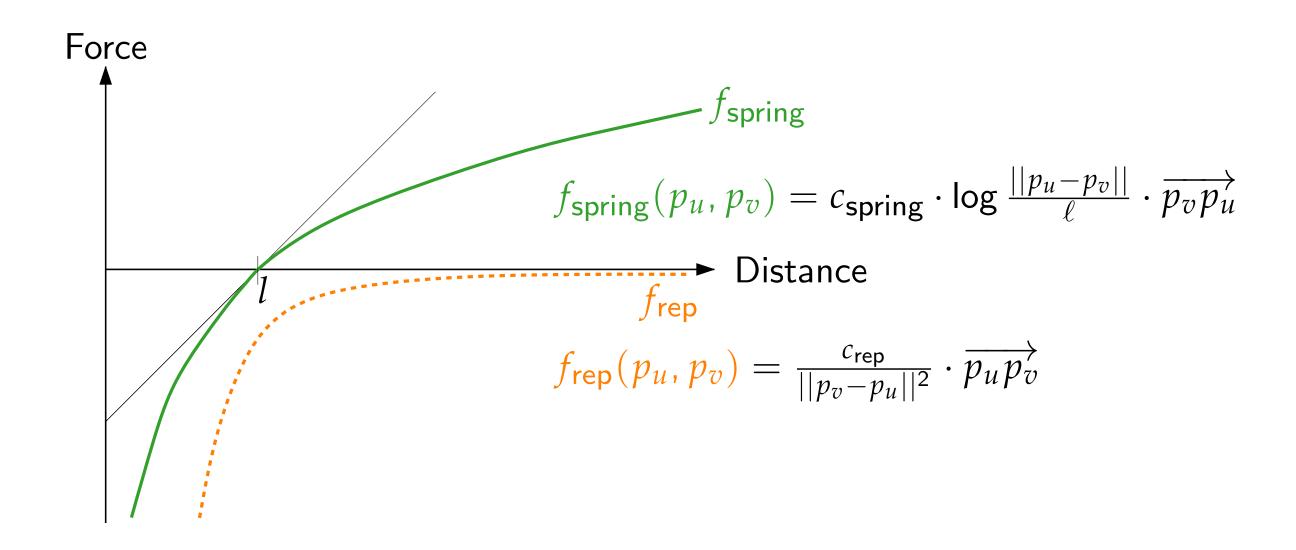
spring constant (e.g. 2.0)
$$f_{\text{spring}}(p_u, p_v) = c_{\text{spring}} \cdot \log \frac{||p_u - p_v||}{\ell} \cdot \overrightarrow{p_v p_u}$$

 \blacksquare resulting displacement vector for node v

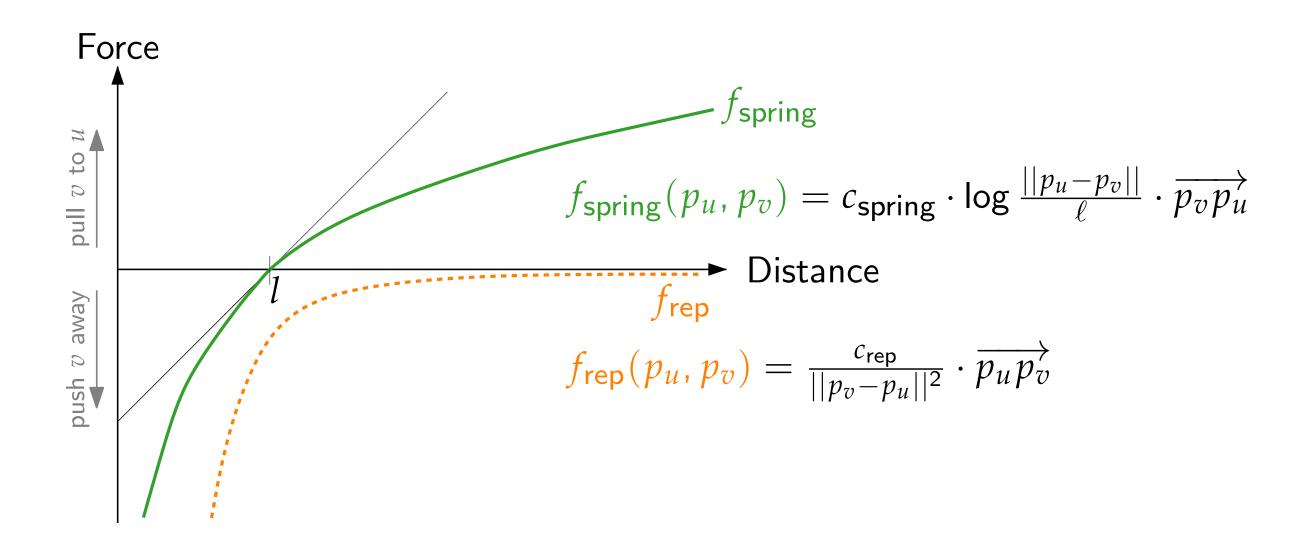
$$F_v = \sum_{u:\{u,v\}\notin E} f_{\text{rep}}(p_u, p_v) + \sum_{u:\{u,v\}\in E} f_{\text{spring}}(p_u, p_v)$$

- $\ell = \ell(e) = \text{ideal spring}$ lenght for edge e
- $p_v = position of vertex v$
- $||p_u p_v|| =$ Euclidean distance between u and v
- $\overrightarrow{p_u p_v} = \text{unit vector}$ pointing from u to v

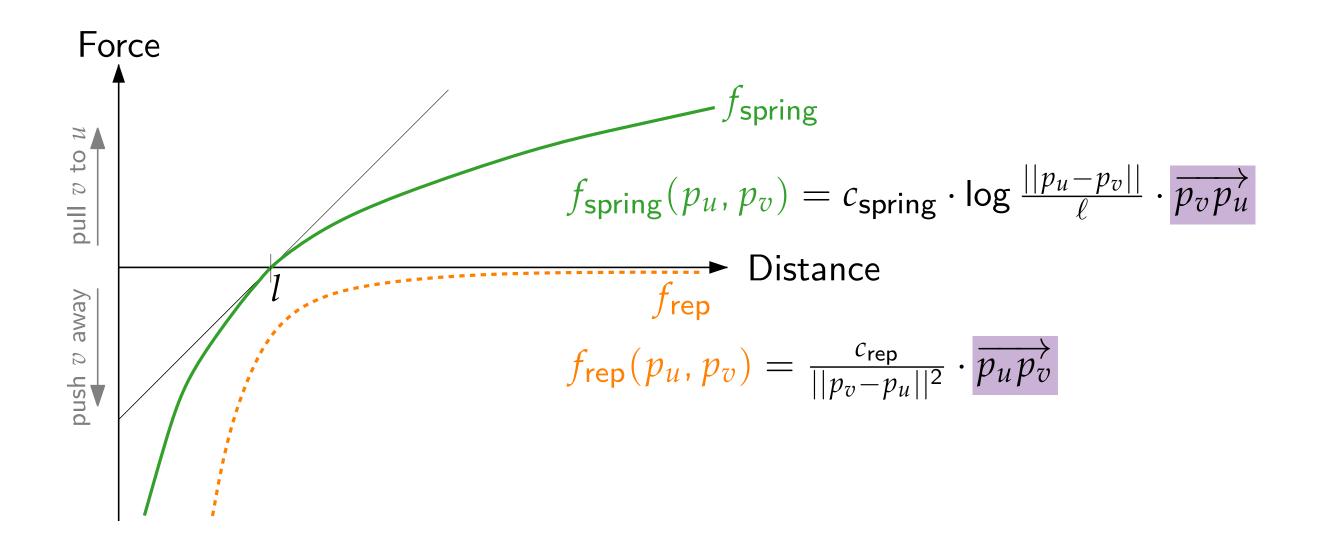
Spring Embedder by Eades – Force diagram



Spring Embedder by Eades – Force diagram



Spring Embedder by Eades – Force diagram



Spring Embedder by Eades – Discussion

Advantages.

- very simple algorithm
- good results for small and medium-sized graphs
- empirically good representation of symmetry and structure

Disadvantages.

- system is not stable at the end
- converging to local minima
- timewise f_{spring} in $\mathcal{O}(|E|)$ and f_{rep} in $\mathcal{O}(|V|^2)$

Influence.

- lacktriangle original paper by Peter Eades [Eades '84] got \sim 2000 citations
- basis for many further ideas

Variant by Fruchterman & Reingold

Model.

 \blacksquare repulsive force between all vertex pairs u and v

$$f_{\text{rep}}(p_u, p_v) = \frac{\ell^2}{||p_v - p_u||} \cdot \overrightarrow{p_u p_v}$$

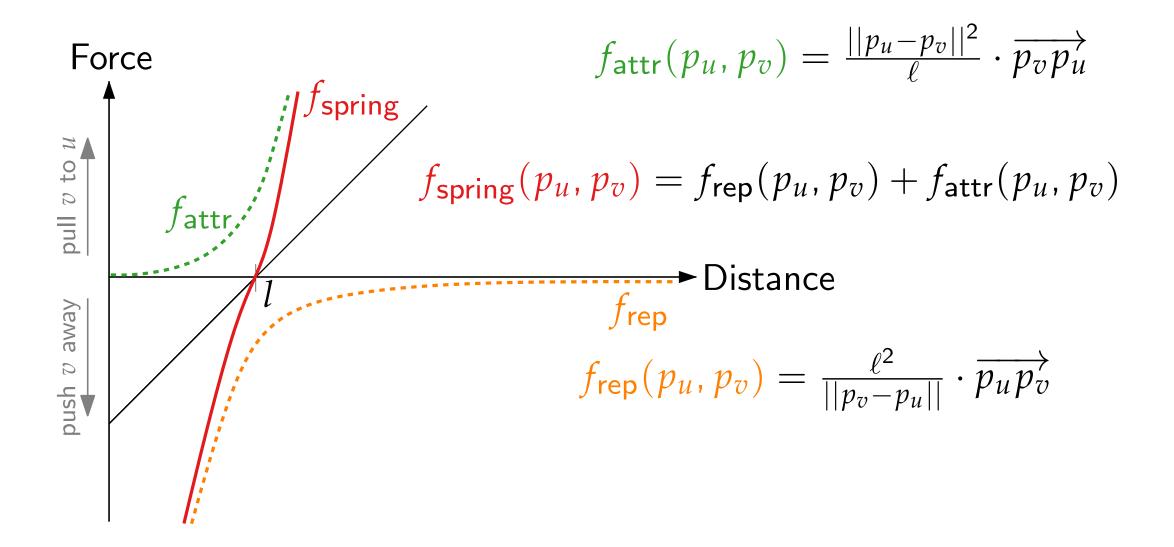
lacktriangle attractive force between two adjacent vertices u and v

$$f_{\text{attr}}(p_u, p_v) = \frac{||p_u - p_v||^2}{\ell} \cdot \overrightarrow{p_v p_u}$$

lacktriangle resulting force between adjacent vertices u and v

$$f_{\text{spring}}(p_u, p_v) = f_{\text{rep}}(p_u, p_v) + f_{\text{attr}}(p_u, p_v)$$

Fruchtermann & Reingold – Force diagram



Inertia.

- Define vertex mass $\Phi(v) = 1 + \deg(v)/2$
- Set $f_{\mathsf{attr}}(p_u, p_v) \leftarrow f_{\mathsf{attr}}(p_u, p_v) \cdot 1/\Phi(v)$

Inertia.

- Define vertex mass $\Phi(v) = 1 + \deg(v)/2$
- Set $f_{\mathsf{attr}}(p_u, p_v) \leftarrow f_{\mathsf{attr}}(p_u, p_v) \cdot 1/\Phi(v)$

Gravitation.

- Define centroid $p_{\mathsf{bary}} = 1/|V| \cdot \sum_{v \in V} p_v$
- Add force $f_{\mathsf{grav}}(p_v) = c_{\mathsf{grav}} \cdot \Phi(v) \cdot \overrightarrow{p_v p_{\mathsf{bary}}}$

Inertia.

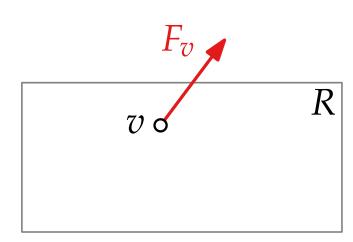
- Define vertex mass $\Phi(v) = 1 + \deg(v)/2$
- Set $f_{\mathsf{attr}}(p_u, p_v) \leftarrow f_{\mathsf{attr}}(p_u, p_v) \cdot 1/\Phi(v)$

Gravitation.

- Define centroid $p_{\text{bary}} = 1/|V| \cdot \sum_{v \in V} p_v$ Add force $f_{\text{grav}}(p_v) = c_{\text{grav}} \cdot \Phi(v) \cdot \overrightarrow{p_v p_{\text{bary}}}$

Restricted drawing area.

If F_v points beyond area R, clip vector appropriately at the border of R.



Inertia.

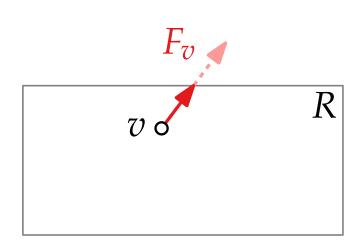
- Define vertex mass $\Phi(v) = 1 + \deg(v)/2$
- Set $f_{\mathsf{attr}}(p_u, p_v) \leftarrow f_{\mathsf{attr}}(p_u, p_v) \cdot 1/\Phi(v)$

Gravitation.

- Define centroid $p_{\text{bary}} = 1/|V| \cdot \sum_{v \in V} p_v$ Add force $f_{\text{grav}}(p_v) = c_{\text{grav}} \cdot \Phi(v) \cdot \overrightarrow{p_v p_{\text{bary}}}$

Restricted drawing area.

If F_v points beyond area R, clip vector appropriately at the border of R.



Inertia.

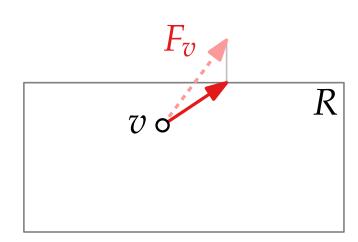
- Define vertex mass $\Phi(v) = 1 + \deg(v)/2$
- Set $f_{\mathsf{attr}}(p_u, p_v) \leftarrow f_{\mathsf{attr}}(p_u, p_v) \cdot 1/\Phi(v)$

Gravitation.

- Define centroid $p_{\text{bary}} = 1/|V| \cdot \sum_{v \in V} p_v$ Add force $f_{\text{grav}}(p_v) = c_{\text{grav}} \cdot \Phi(v) \cdot \overrightarrow{p_v p_{\text{bary}}}$

Restricted drawing area.

If F_v points beyond area R, clip vector appropriately at the border of R.



Inertia.

- Define vertex mass $\Phi(v) = 1 + \deg(v)/2$
- Set $f_{\mathsf{attr}}(p_u, p_v) \leftarrow f_{\mathsf{attr}}(p_u, p_v) \cdot 1/\Phi(v)$

Gravitation.

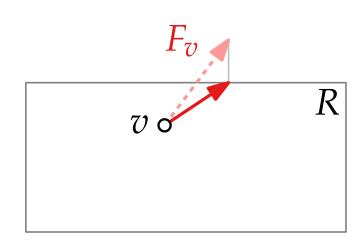
- Define centroid $p_{\mathsf{bary}} = 1/|V| \cdot \sum_{v \in V} p_v$ Add force $f_{\mathsf{grav}}(p_v) = c_{\mathsf{grav}} \cdot \Phi(v) \cdot \overrightarrow{p_v p_{\mathsf{bary}}}$

Restricted drawing area.

If F_v points beyond area R, clip vector appropriately at the border of R.

And many more...

- magnetic orientation of edges [GD Ch. 10.4]
- other energy models
- planarity preserving
- speedups



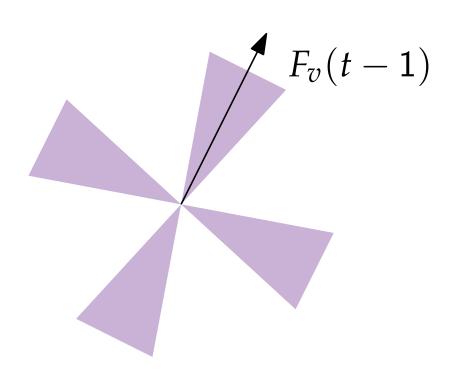
Reminder...

```
SpringEmbedder(G = (V, E), p = (p_v)_{v \in V}, \varepsilon > 0, K \in \mathbb{N})
  t \leftarrow 1
  while t < K and \max_{v \in V} ||F_v(t)|| > \varepsilon do
       foreach v \in V do
        |F_v(t) \leftarrow \sum_{u:uv \notin E} f_{\mathsf{rep}}(p_u, p_v) + \sum_{u:uv \in E} f_{\mathsf{spring}}(p_u, p_v)
       foreach v \in V do
       t \leftarrow t+1
  return p
```

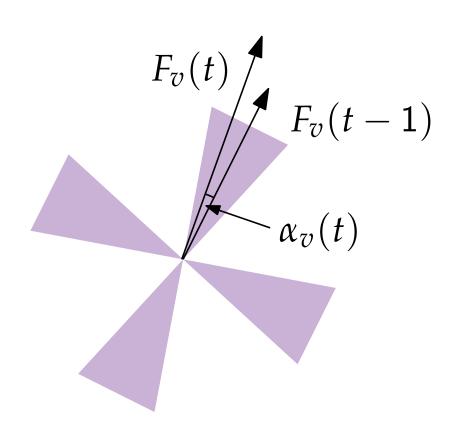
Reminder...

```
SpringEmbedder(G = (V, E), p = (p_v)_{v \in V}, \varepsilon > 0, K \in \mathbb{N})
  t \leftarrow 1
  while t < K and \max_{v \in V} ||F_v(t)|| > \varepsilon do
       foreach v \in V do
        F_v(t) \leftarrow \sum_{u:uv \notin E} f_{\mathsf{rep}}(p_u, p_v) + \sum_{u:uv \in E} f_{\mathsf{spring}}(p_u, p_v)
       foreach v \in V do
      return p
```

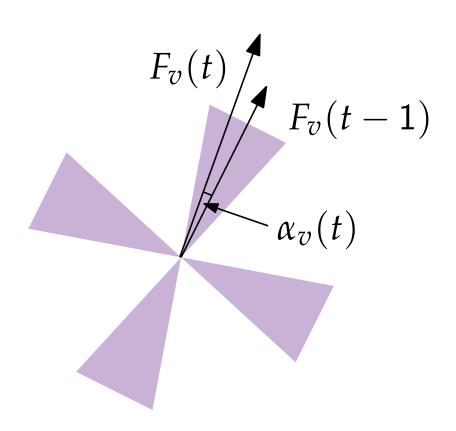
[Frick, Ludwig, Mehldau '95]



[Frick, Ludwig, Mehldau '95]



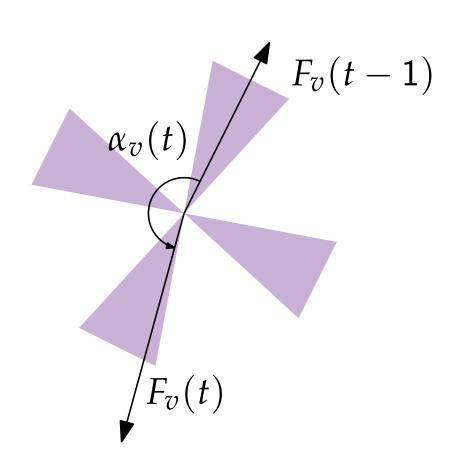
[Frick, Ludwig, Mehldau '95]



Same direction.

 \rightarrow increase temperature $\delta_v(t)$

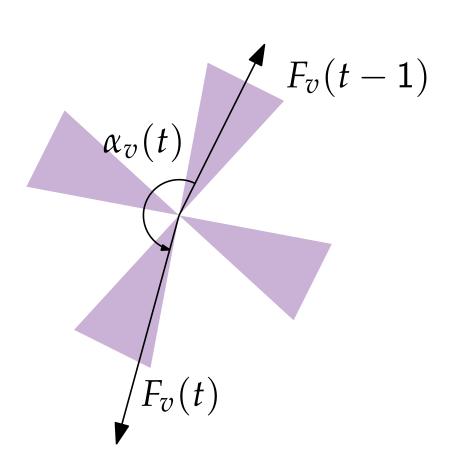
[Frick, Ludwig, Mehldau '95]



Same direction.

 \rightarrow increase temperature $\delta_v(t)$

[Frick, Ludwig, Mehldau '95]



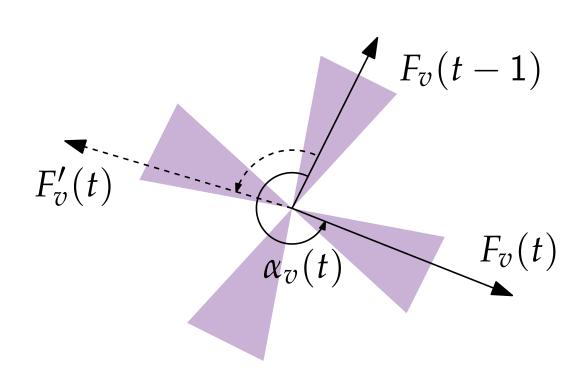
Same direction.

 \rightarrow increase temperature $\delta_v(t)$

Oszillation.

 \rightarrow decrease temperature $\delta_v(t)$

[Frick, Ludwig, Mehldau '95]



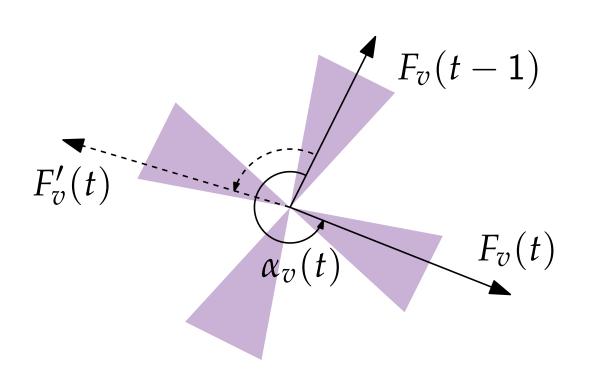
Same direction.

 \rightarrow increase temperature $\delta_v(t)$

Oszillation.

 \rightarrow decrease temperature $\delta_v(t)$

[Frick, Ludwig, Mehldau '95]



Same direction.

 \rightarrow increase temperature $\delta_v(t)$

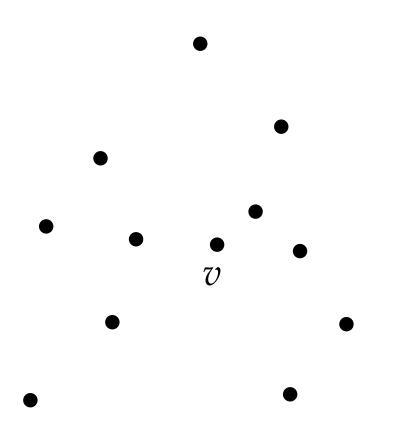
Oszillation.

 \rightarrow decrease temperature $\delta_v(t)$

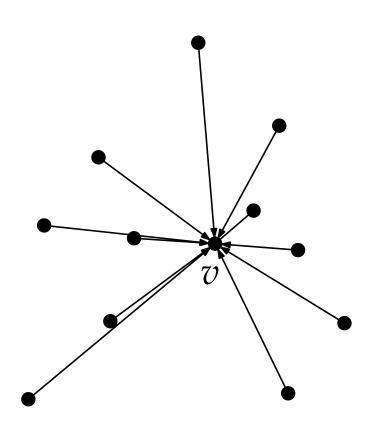
Rotation.

- count rotations
- if applicable
- \rightarrow decrease temperature $\delta_v(t)$

[Fruchterman & Reingold '91]



[Fruchterman & Reingold '91]

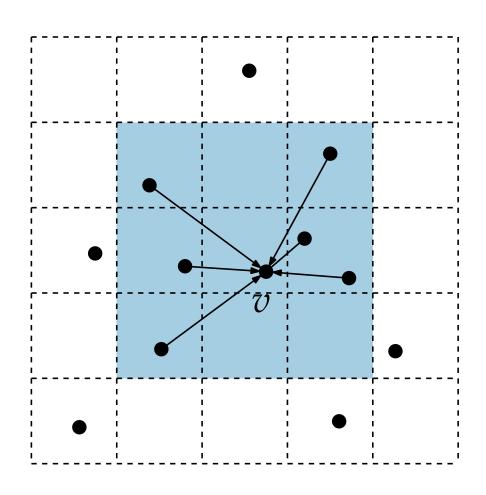


[Fruchterman & Reingold '91]



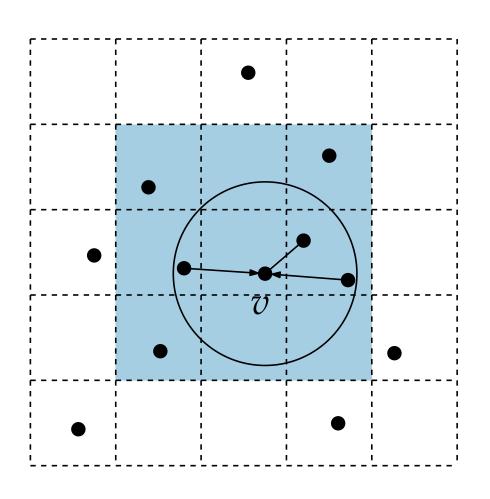
divide plane into grid

[Fruchterman & Reingold '91]



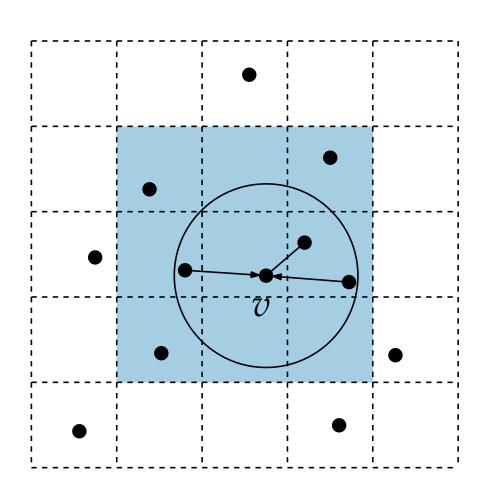
- divide plane into grid
- consider repelling forces only to vertices in neighboring cells

[Fruchterman & Reingold '91]



- divide plane into grid
- consider repelling forces only to vertices in neighboring cells
- and only if distance is less than some max distance

[Fruchterman & Reingold '91]

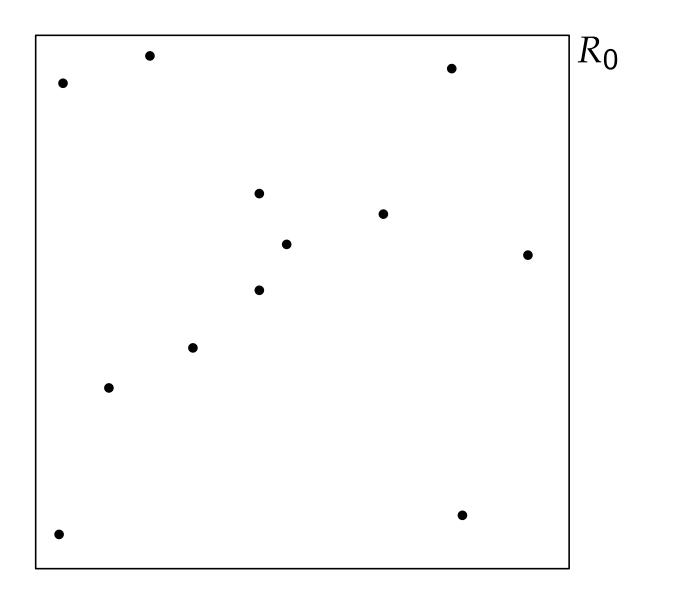


- divide plane into grid
- consider repelling forces only to vertices in neighboring cells
- and only if distance is less than some max distance

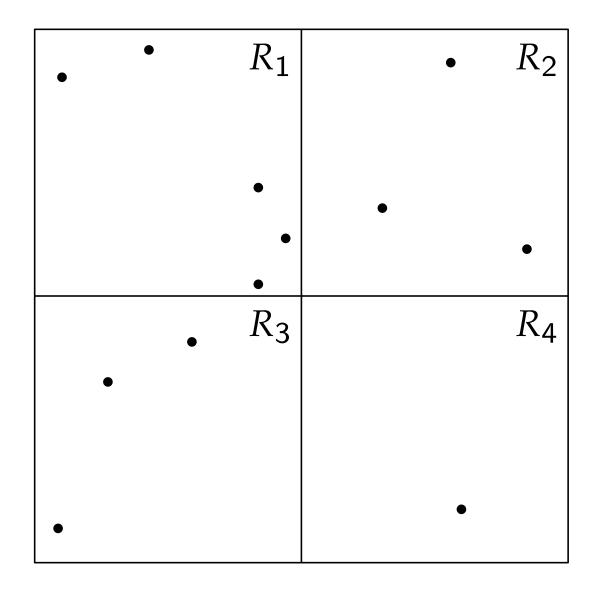
Discussion.

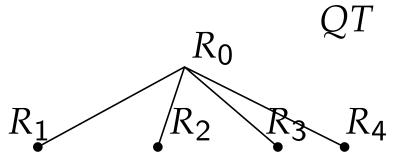
- good idea to improve runtime
- worst-case has not improved
- might introduce oszillation and thus a quality loss

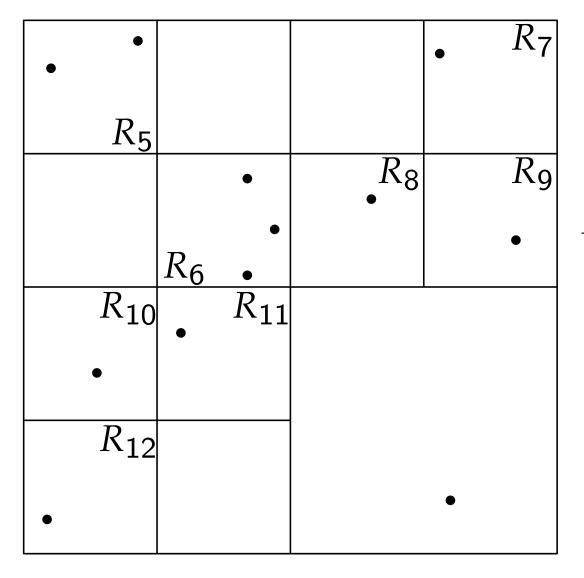
[Barnes, Hut '86]

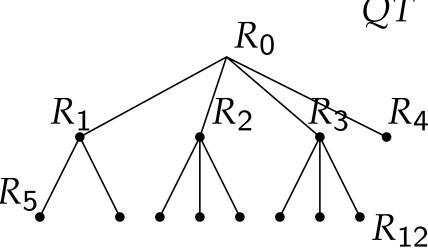


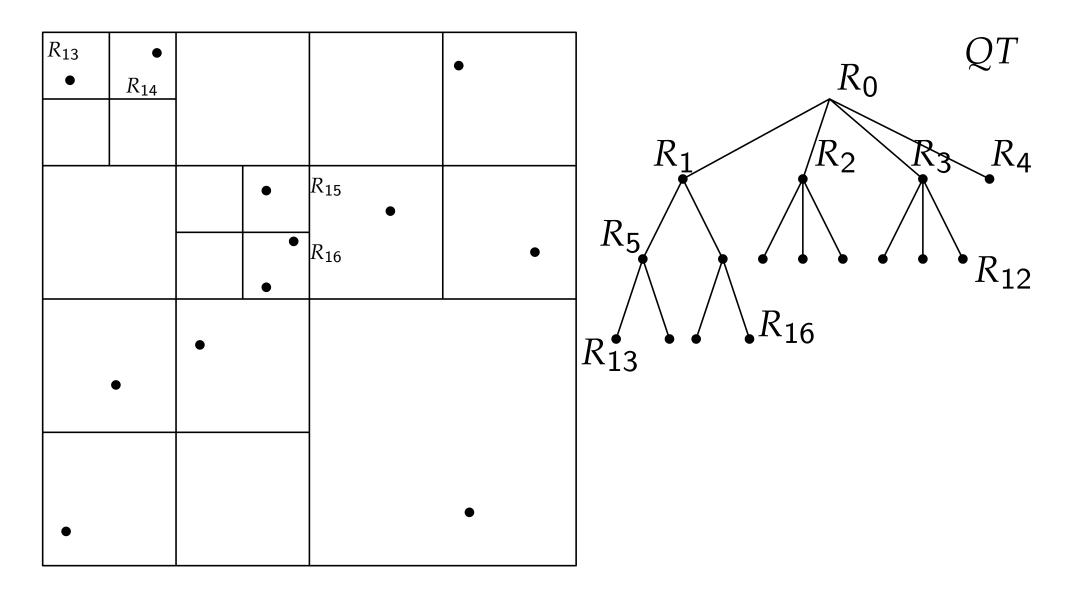
 R_0 Q_1

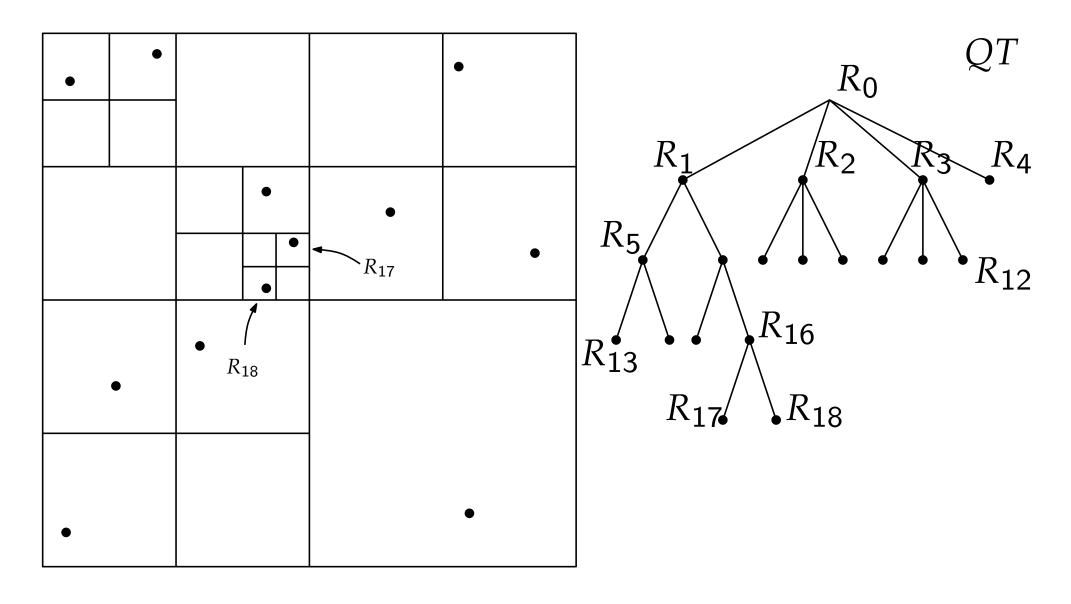


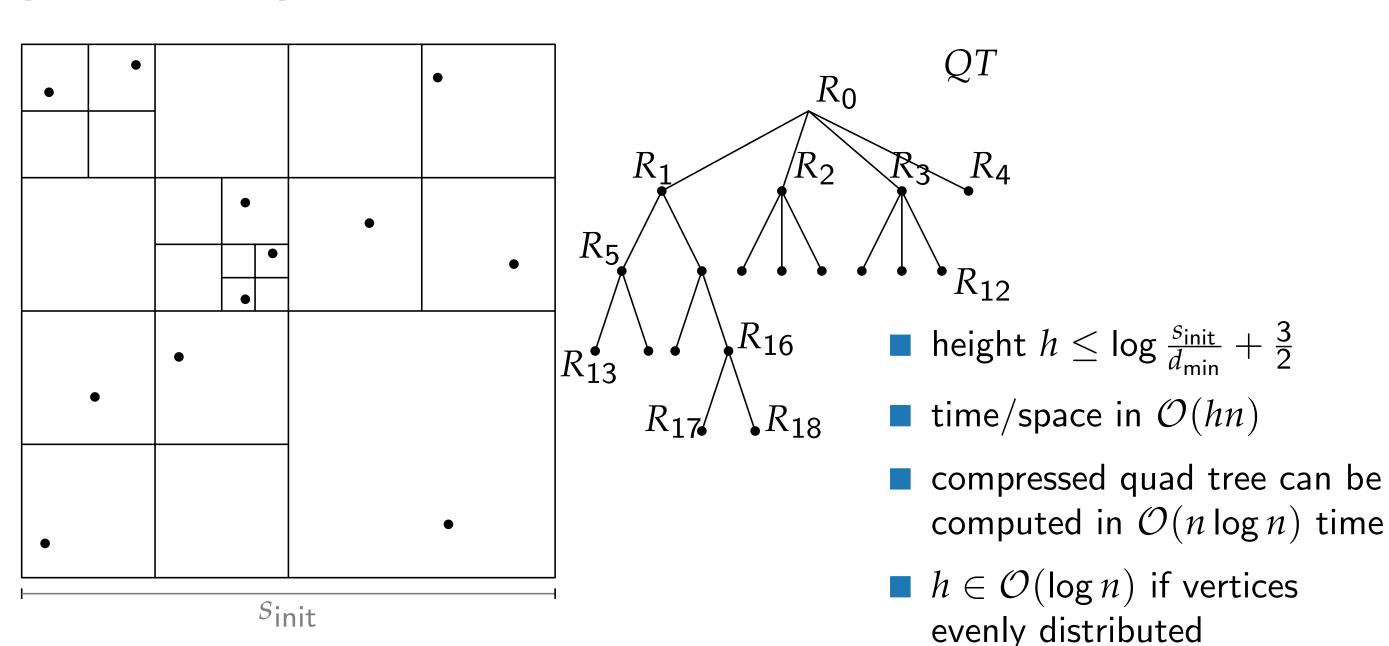


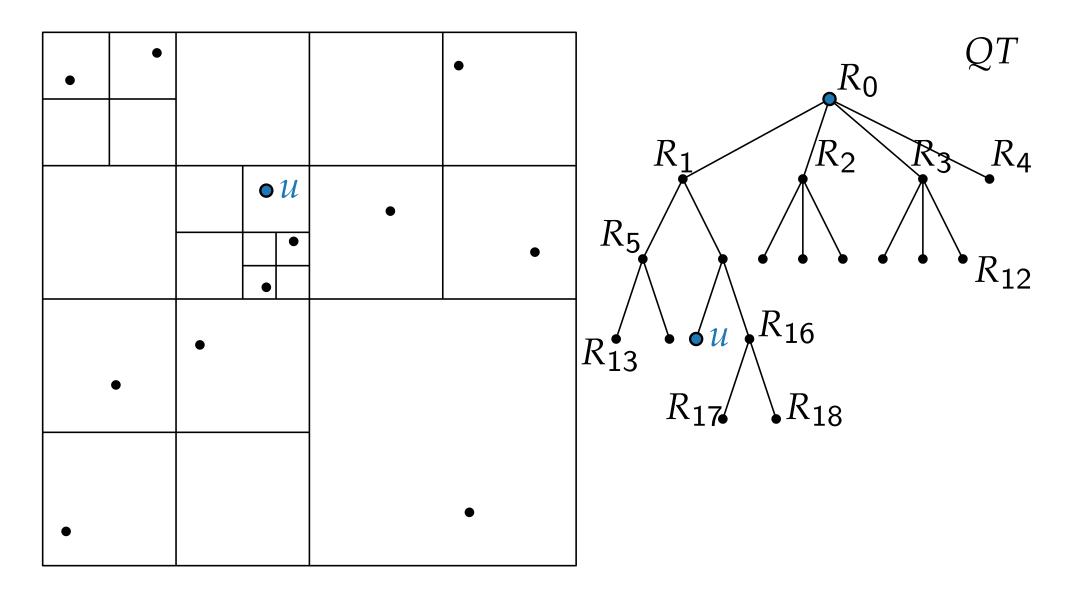


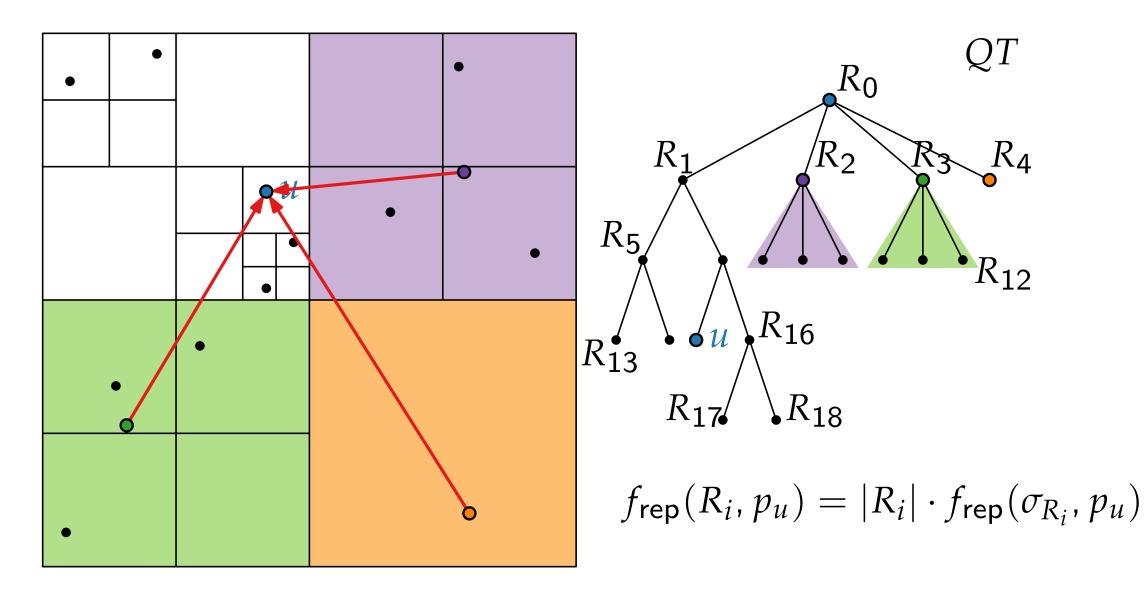


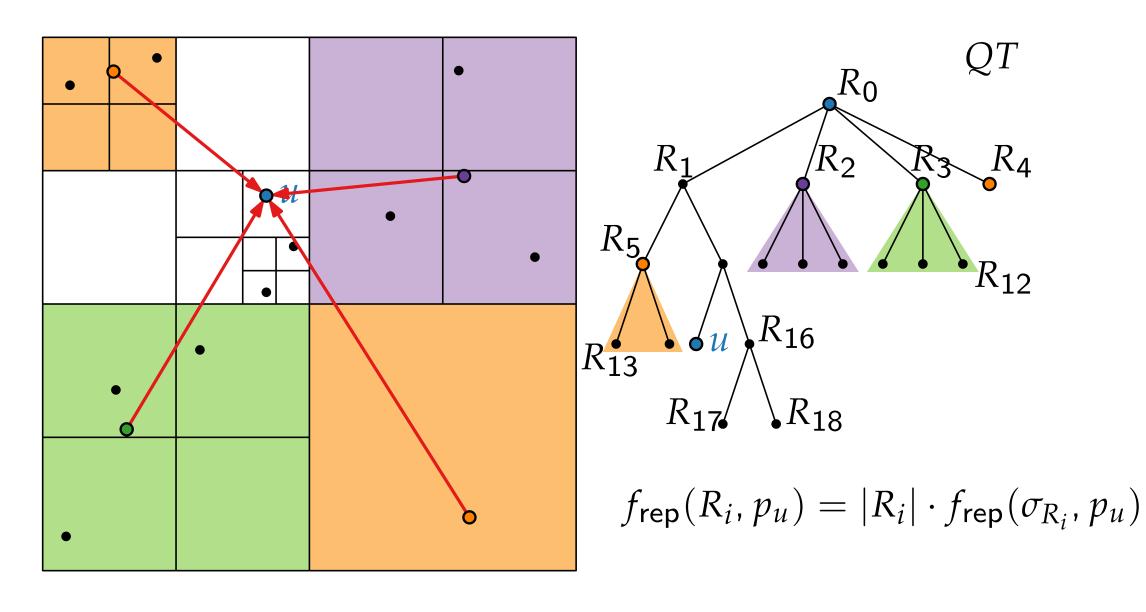


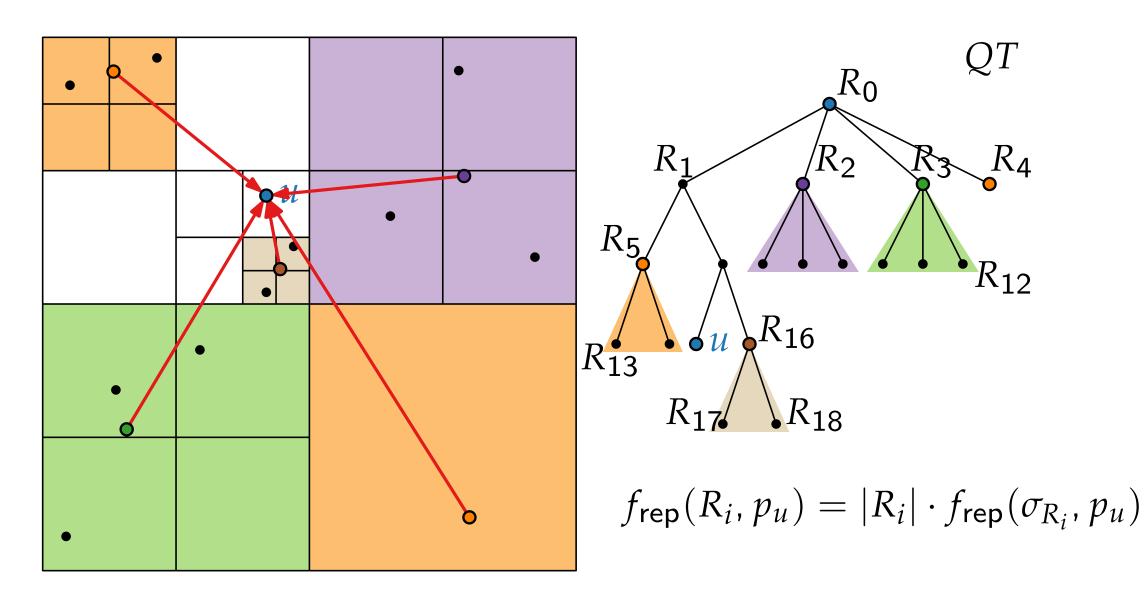




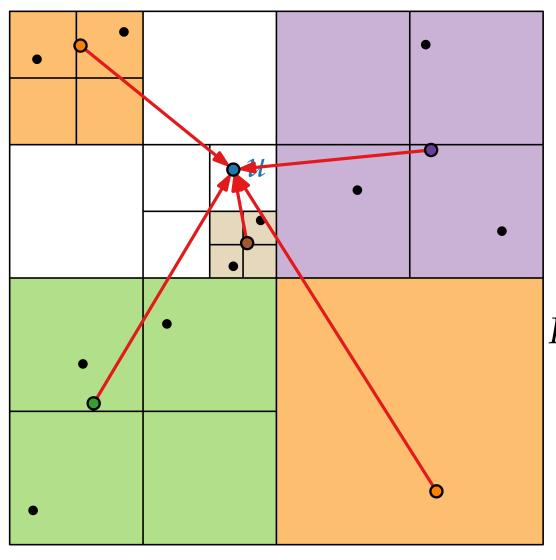


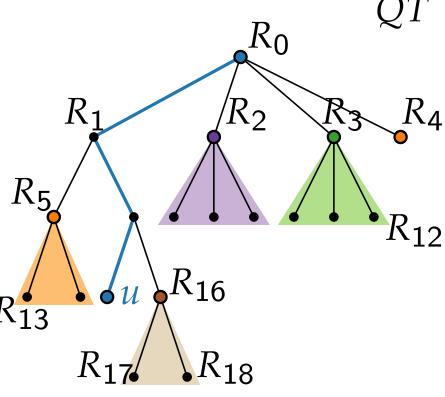






[Barnes, Hut '86]





$$f_{\mathsf{rep}}(R_i, p_u) = |R_i| \cdot f_{\mathsf{rep}}(\sigma_{R_i}, p_u)$$

for each child R_i of a vertex on path from u to R_0

■ Force-directed method reaches its limitations for large graphs

■ Force-directed method reaches its limitations for large graphs Idea.

Adapt the classical approach multidimensional scaling (MDS):

- MDS is a technique to visualise similarity among a set of objects
- Input is a distance matric D with $d_{ij}\sim$ dissimilarity between objects i and j
- We search for points $x_1, \ldots, x_n \in \mathbb{R}^2$ such that

$$||x_i - x_j|| \approx d_{ij}$$

■ Force-directed method reaches its limitations for large graphs Idea.

Adapt the classical approach multidimensional scaling (MDS):

- MDS is a technique to visualise similarity among a set of objects
- Input is a distance matric D with $d_{ij} \sim$ dissimilarity between objects i and j
- lacksquare We search for points $x_1,\ldots,x_n\in\mathbb{R}^2$ such that

$$||x_i - x_j|| \approx d_{ij}$$

For our drawing, how do we define the dissimilarity between two vertices?

■ Force-directed method reaches its limitations for large graphs Idea.

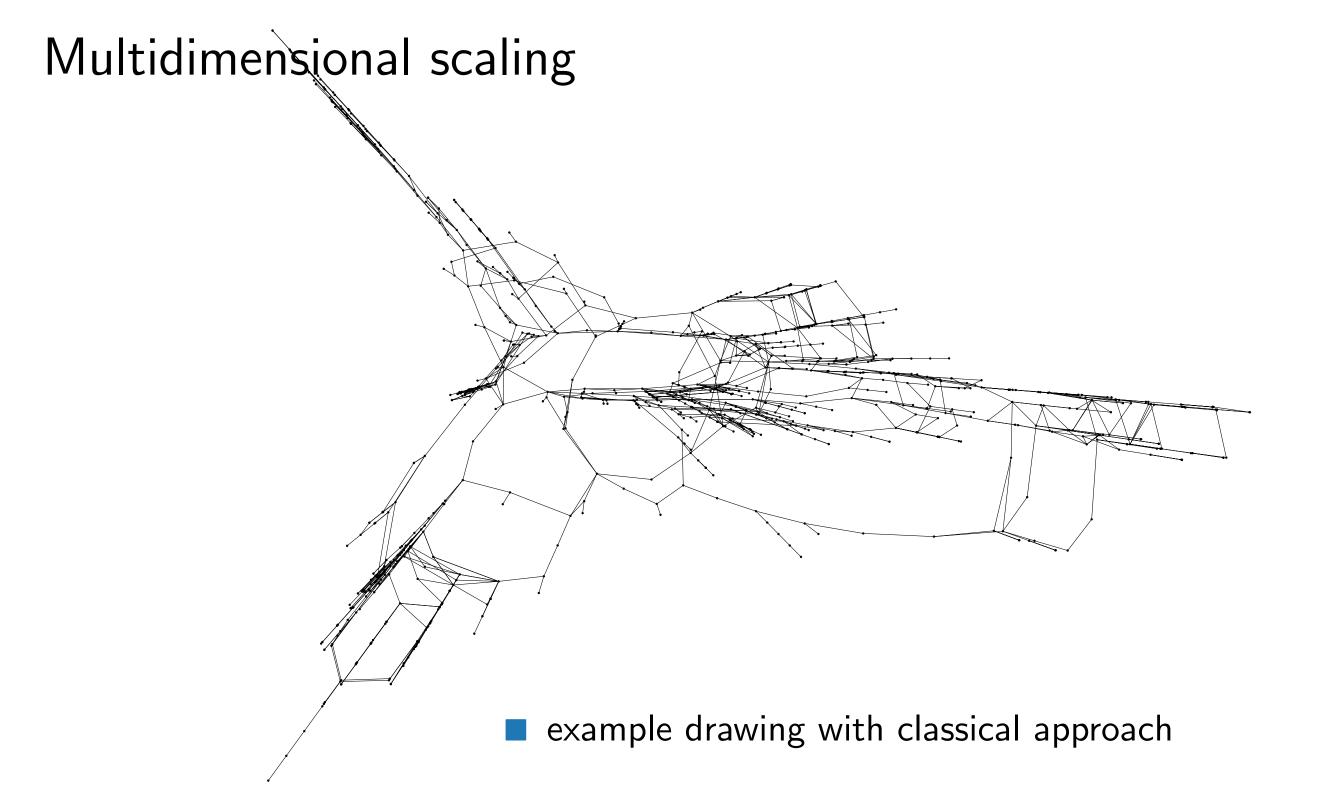
Adapt the classical approach multidimensional scaling (MDS):

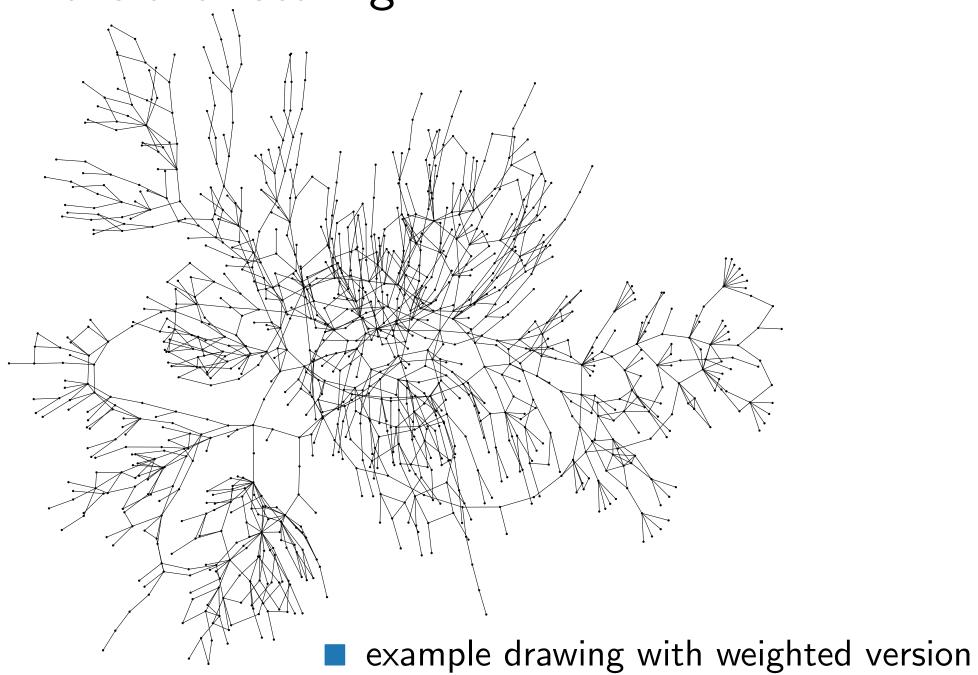
- MDS is a technique to visualise similarity among a set of objects
- Input is a distance matric D with $d_{ij} \sim$ dissimilarity between objects i and j
- We search for points $x_1, \ldots, x_n \in \mathbb{R}^2$ such that

$$||x_i - x_j|| \approx d_{ij}$$

For our drawing, how do we define the dissimilarity between two vertices?

Set d_{uv} as the distance of u and v in G in terms of a shortest path between them.





Literature

Main sources:

- [GD Ch. 10] Force-Directed Methods
- [DG Ch. 4] Drawing on Physical Analogies

Referenced papers:

- [Johnson 1982] The NP-completeness column: An ongoing guide
- [Eades, Wormald 1990] Fixed edge-length graph drawing is NP-hard
- [Saxe 1980] Two papers on graph embedding problems
- [Eades 1984] A heuristic for graph drawing
- [Fruchterman, Reingold 1991] Graph drawing by force-directed placement
- [Frick, Ludwig, Mehldau 1994] A fast adaptive layout algorithm for undirected graphs