
1

Visualization of graphs

Drawing with physical analogies
Force-directed algorithms

Antonios Symvonis · Chrysanthi Raftopoulou
Fall semester 2022

The original slides of this presentation were created by researchers at Karlsruhe Institute of Technology (KIT), TU Wien, U Wuerzburg, U Konstanz, ...
The original presentation was modified/updated by A. Symvonis and C. Raftopoulou



2 - 1

General Layout Problem

Input: Graph G = (V, E)



2 - 2

General Layout Problem

Input: Graph G = (V, E)
Output: Clear and readable straight-line drawing of G



2 - 3

General Layout Problem

Input: Graph G = (V, E)
Output: Clear and readable straight-line drawing of G

■ Which aesthetic criteria
would you optimize?



2 - 4

General Layout Problem

Input: Graph G = (V, E)
Output: Clear and readable straight-line drawing of G
Aesthetic criteria:

■ adjacent vertices are close

■ non-adjacent vertices are far apart

■ edges short, straight-line, similar length

■ densely connected parts (clusters) form communities

■ as few crossings as possible

■ nodes distributed evenly



2 - 5

General Layout Problem

Input: Graph G = (V, E)
Output: Clear and readable straight-line drawing of G
Aesthetic criteria:

■ adjacent vertices are close

■ non-adjacent vertices are far apart

■ edges short, straight-line, similar length

■ densely connected parts (clusters) form communities

■ as few crossings as possible

■ nodes distributed evenly

Optimization criteria partially contradict each other



3 - 1

Fixed edge lengths?

Input: Graph G = (V, E), required edge length ℓ(e), ∀e ∈ E
Output: Drawing of G which realizes all the edge lengths



3 - 2

Fixed edge lengths?

Input: Graph G = (V, E), required edge length ℓ(e), ∀e ∈ E
Output: Drawing of G which realizes all the edge lengths



3 - 3

Fixed edge lengths?

NP-hard for
■ uniform edge lengths in any dimension [Johnson ’82]

■ uniform edge lengths in planar drawings [Eades, Wormald ’90]

■ edge lengths {1, 2} [Saxe ’80]

Input: Graph G = (V, E), required edge length ℓ(e), ∀e ∈ E
Output: Drawing of G which realizes all the edge lengths



4 - 1

Physical analogy

Idea 1.
“To embed a graph we replace the vertices by steel rings and replace each
edge with a spring to form a mechanical system . . . The vertices are placed in
some initial layout and let go so that the spring forces on the rings move the
system to a minimal energy state.” [Eades ’84]



4 - 2

Physical analogy

Idea 1.
“To embed a graph we replace the vertices by steel rings and replace each
edge with a spring to form a mechanical system . . . The vertices are placed in
some initial layout and let go so that the spring forces on the rings move the
system to a minimal energy state.” [Eades ’84]



4 - 3

Physical analogy

Idea 1.
“To embed a graph we replace the vertices by steel rings and replace each
edge with a spring to form a mechanical system . . . The vertices are placed in
some initial layout and let go so that the spring forces on the rings move the
system to a minimal energy state.” [Eades ’84]



4 - 4

Physical analogy

Idea 1.
“To embed a graph we replace the vertices by steel rings and replace each
edge with a spring to form a mechanical system . . . The vertices are placed in
some initial layout and let go so that the spring forces on the rings move the
system to a minimal energy state.” [Eades ’84]



4 - 5

Physical analogy

Idea 1.
“To embed a graph we replace the vertices by steel rings and replace each
edge with a spring to form a mechanical system . . . The vertices are placed in
some initial layout and let go so that the spring forces on the rings move the
system to a minimal energy state.” [Eades ’84]



4 - 6

Physical analogy

Idea 1.
“To embed a graph we replace the vertices by steel rings and replace each
edge with a spring to form a mechanical system . . . The vertices are placed in
some initial layout and let go so that the spring forces on the rings move the
system to a minimal energy state.” [Eades ’84]

■ adjacent vertices u and v:
u v

fspring



4 - 7

Physical analogy

Idea 1.
“To embed a graph we replace the vertices by steel rings and replace each
edge with a spring to form a mechanical system . . . The vertices are placed in
some initial layout and let go so that the spring forces on the rings move the
system to a minimal energy state.” [Eades ’84]

■ adjacent vertices u and v:
u v

fspring
Idea 2.
Repulsive forces.

■ non-adjacent vertices x and y:
x

yfrep



4 - 8

Physical analogy

Idea 1.
“To embed a graph we replace the vertices by steel rings and replace each
edge with a spring to form a mechanical system . . . The vertices are placed in
some initial layout and let go so that the spring forces on the rings move the
system to a minimal energy state.” [Eades ’84]

■ adjacent vertices u and v:
u v

fspring
Idea 2.
Repulsive forces.

■ non-adjacent vertices x and y:
x

yfrep

So-called spring-embedder algorithms that
work according to this or similar principles
are among the most frequently used
graph-drawing methods in practice.



5

Outline

■ Spring Embedder by Eades

■ Variation by Fruchterman & Reingold

■ Ways to speed up computation

■ Alternative multidimensional scaling for large graphs



6 - 1

Spring Embedder by Eades – Algorithm

SpringEmbedder(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)

t← 1
while t < K and maxv∈V ∥Fv(t)∥ > ε do

foreach v ∈ V do
Fv(t)← ∑u:uv/∈E frep(pu, pv) + ∑u:uv∈E fspring(pu, pv)

foreach v ∈ V do
pv ← pv + δ(t) · Fv(t)

t← t + 1

return p



6 - 2

Spring Embedder by Eades – Algorithm

SpringEmbedder(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)

t← 1
while t < K and maxv∈V ∥Fv(t)∥ > ε do

foreach v ∈ V do
Fv(t)← ∑u:uv/∈E frep(pu, pv) + ∑u:uv∈E fspring(pu, pv)

foreach v ∈ V do
pv ← pv + δ(t) · Fv(t)

t← t + 1

return p

initial layout



6 - 3

Spring Embedder by Eades – Algorithm

end layout

SpringEmbedder(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)

t← 1
while t < K and maxv∈V ∥Fv(t)∥ > ε do

foreach v ∈ V do
Fv(t)← ∑u:uv/∈E frep(pu, pv) + ∑u:uv∈E fspring(pu, pv)

foreach v ∈ V do
pv ← pv + δ(t) · Fv(t)

t← t + 1

return p

initial layout



6 - 4

Spring Embedder by Eades – Algorithm

end layout

SpringEmbedder(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)

t← 1
while t < K and maxv∈V ∥Fv(t)∥ > ε do

foreach v ∈ V do
Fv(t)← ∑u:uv/∈E frep(pu, pv) + ∑u:uv∈E fspring(pu, pv)

foreach v ∈ V do
pv ← pv + δ(t) · Fv(t)

t← t + 1

return p

initial layout threshold
iterations



6 - 5

Spring Embedder by Eades – Algorithm

end layout

SpringEmbedder(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)

t← 1
while t < K and maxv∈V ∥Fv(t)∥ > ε do

foreach v ∈ V do
Fv(t)← ∑u:uv/∈E frep(pu, pv) + ∑u:uv∈E fspring(pu, pv)

foreach v ∈ V do
pv ← pv + δ(t) · Fv(t)

t← t + 1

return p

initial layout threshold
iterations



6 - 6

Spring Embedder by Eades – Algorithm

end layout

SpringEmbedder(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)

t← 1
while t < K and maxv∈V ∥Fv(t)∥ > ε do

foreach v ∈ V do
Fv(t)← ∑u:uv/∈E frep(pu, pv) + ∑u:uv∈E fspring(pu, pv)

foreach v ∈ V do
pv ← pv + δ(t) · Fv(t)

t← t + 1

return p

initial layout threshold
iterations

v



6 - 7

Spring Embedder by Eades – Algorithm

end layout

SpringEmbedder(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)

t← 1
while t < K and maxv∈V ∥Fv(t)∥ > ε do

foreach v ∈ V do
Fv(t)← ∑u:uv/∈E frep(pu, pv) + ∑u:uv∈E fspring(pu, pv)

foreach v ∈ V do
pv ← pv + δ(t) · Fv(t)

t← t + 1

return p

initial layout threshold
iterations

v

v



6 - 8

Spring Embedder by Eades – Algorithm

end layout

SpringEmbedder(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)

t← 1
while t < K and maxv∈V ∥Fv(t)∥ > ε do

foreach v ∈ V do
Fv(t)← ∑u:uv/∈E frep(pu, pv) + ∑u:uv∈E fspring(pu, pv)

foreach v ∈ V do
pv ← pv + δ(t) · Fv(t)

t← t + 1

return p

initial layout threshold
iterations

v

v
cooling factor

δ(t)

t



7 - 1

Spring Embedder by Eades – Model

Notation.

■ ℓ = ℓ(e) = ideal spring
lenght for edge e

■ pv = position of vertex v

■ ||pu − pv|| = Euclidean
distance between u and v

■
−−→pu pv = unit vector
pointing from u to v



7 - 2

Spring Embedder by Eades – Model

■ repulsive force between two non-adjacent
vertices u and v

frep(pu, pv) =
crep

||pv − pu||2
· −−→pu pv

■ attractive force between adjacent vertices u
and v

fspring(pu, pv) = cspring · log
||pu − pv||

ℓ
· −−→pv pu

■ resulting displacement vector for node v

Fv = ∑
u:{u,v}̸∈E

frep(pu, pv) + ∑
u:{u,v}∈E

fspring(pu, pv)

Notation.

■ ℓ = ℓ(e) = ideal spring
lenght for edge e

■ pv = position of vertex v

■ ||pu − pv|| = Euclidean
distance between u and v

■
−−→pu pv = unit vector
pointing from u to v



7 - 3

Spring Embedder by Eades – Model

■ repulsive force between two non-adjacent
vertices u and v

frep(pu, pv) =
crep

||pv − pu||2
· −−→pu pv

■ attractive force between adjacent vertices u
and v

fspring(pu, pv) = cspring · log
||pu − pv||

ℓ
· −−→pv pu

■ resulting displacement vector for node v

Fv = ∑
u:{u,v}̸∈E

frep(pu, pv) + ∑
u:{u,v}∈E

fspring(pu, pv)

Notation.

■ ℓ = ℓ(e) = ideal spring
lenght for edge e

■ pv = position of vertex v

■ ||pu − pv|| = Euclidean
distance between u and v

■
−−→pu pv = unit vector
pointing from u to v

repulsion constant (e.g. 1.0)



7 - 4

Spring Embedder by Eades – Model

■ repulsive force between two non-adjacent
vertices u and v

frep(pu, pv) =
crep

||pv − pu||2
· −−→pu pv

■ attractive force between adjacent vertices u
and v

fspring(pu, pv) = cspring · log
||pu − pv||

ℓ
· −−→pv pu

■ resulting displacement vector for node v

Fv = ∑
u:{u,v}̸∈E

frep(pu, pv) + ∑
u:{u,v}∈E

fspring(pu, pv)

Notation.

■ ℓ = ℓ(e) = ideal spring
lenght for edge e

■ pv = position of vertex v

■ ||pu − pv|| = Euclidean
distance between u and v

■
−−→pu pv = unit vector
pointing from u to v

repulsion constant (e.g. 1.0)

spring constant (e.g. 2.0)



8 - 1

Spring Embedder by Eades – Force diagram

Distance
frep

fspring

l

Force

frep(pu, pv) =
crep

||pv−pu ||2 ·
−−→pu pv

fspring(pu, pv) = cspring · log
||pu−pv ||

ℓ · −−→pv pu



8 - 2

Spring Embedder by Eades – Force diagram

Distance
frep

fspring

l

Force

frep(pu, pv) =
crep

||pv−pu ||2 ·
−−→pu pv

fspring(pu, pv) = cspring · log
||pu−pv ||

ℓ · −−→pv pu

p
u
ll

v
to

u
p
u
sh

v
aw

ay



8 - 3

Spring Embedder by Eades – Force diagram

Distance
frep

fspring

l

Force

frep(pu, pv) =
crep

||pv−pu ||2 ·
−−→pu pv

fspring(pu, pv) = cspring · log
||pu−pv ||

ℓ · −−→pv pu

p
u
ll

v
to

u
p
u
sh

v
aw

ay



9

Spring Embedder by Eades – Discussion

Advantages.
■ very simple algorithm
■ good results for small and medium-sized graphs
■ empirically good representation of symmetry and structure

Disadvantages.
■ system is not stable at the end
■ converging to local minima
■ timewise fspring in O(|E|) and frep in O(|V|2)

Influence.
■ original paper by Peter Eades [Eades ’84] got ∼ 2000 citations
■ basis for many further ideas



10

Variant by Fruchterman & Reingold

Model.
■ repulsive force between all vertex pairs u and v

frep(pu, pv) =
ℓ2

||pv − pu||
· −−→pu pv

■ attractive force between two adjacent vertices u and v

fattr(pu, pv) =
||pu − pv||2

ℓ
· −−→pv pu

■ resulting force between adjacent vertices u and v

fspring(pu, pv) = frep(pu, pv) + fattr(pu, pv)



11

Fruchtermann & Reingold – Force diagram

Distance
frep

fspring

l

fattr

Force

frep(pu, pv) =
ℓ2

||pv−pu || ·
−−→pu pv

fattr(pu, pv) =
||pu−pv ||2

ℓ · −−→pv pu

fspring(pu, pv) = frep(pu, pv) + fattr(pu, pv)

p
u
ll

v
to

u
p
u
sh

v
aw

ay



12 - 1

Adaptability

Inertia.
■ Define vertex mass Φ(v) = 1+ deg(v)/2
■ Set fattr(pu, pv)← fattr(pu, pv) · 1/Φ(v)



12 - 2

Adaptability

Inertia.
■ Define vertex mass Φ(v) = 1+ deg(v)/2
■ Set fattr(pu, pv)← fattr(pu, pv) · 1/Φ(v)
Gravitation.
■ Define centroid pbary = 1/|V| ·∑v∈V pv
■ Add force fgrav(pv) = cgrav ·Φ(v) · −−−−→pv pbary



12 - 3

Adaptability

Inertia.
■ Define vertex mass Φ(v) = 1+ deg(v)/2
■ Set fattr(pu, pv)← fattr(pu, pv) · 1/Φ(v)
Gravitation.
■ Define centroid pbary = 1/|V| ·∑v∈V pv
■ Add force fgrav(pv) = cgrav ·Φ(v) · −−−−→pv pbary
Restricted drawing area.
If Fv points beyond area R, clip vector appropriately
at the border of R. v

Fv

R



12 - 4

Adaptability

Inertia.
■ Define vertex mass Φ(v) = 1+ deg(v)/2
■ Set fattr(pu, pv)← fattr(pu, pv) · 1/Φ(v)
Gravitation.
■ Define centroid pbary = 1/|V| ·∑v∈V pv
■ Add force fgrav(pv) = cgrav ·Φ(v) · −−−−→pv pbary
Restricted drawing area.
If Fv points beyond area R, clip vector appropriately
at the border of R. v

Fv

R



12 - 5

Adaptability

Inertia.
■ Define vertex mass Φ(v) = 1+ deg(v)/2
■ Set fattr(pu, pv)← fattr(pu, pv) · 1/Φ(v)
Gravitation.
■ Define centroid pbary = 1/|V| ·∑v∈V pv
■ Add force fgrav(pv) = cgrav ·Φ(v) · −−−−→pv pbary
Restricted drawing area.
If Fv points beyond area R, clip vector appropriately
at the border of R. v

Fv

R



12 - 6

Adaptability

Inertia.
■ Define vertex mass Φ(v) = 1+ deg(v)/2
■ Set fattr(pu, pv)← fattr(pu, pv) · 1/Φ(v)
Gravitation.
■ Define centroid pbary = 1/|V| ·∑v∈V pv
■ Add force fgrav(pv) = cgrav ·Φ(v) · −−−−→pv pbary
Restricted drawing area.
If Fv points beyond area R, clip vector appropriately
at the border of R. v

Fv

And many more...
■ magnetic orientation of edges [GD Ch. 10.4]
■ other energy models
■ planarity preserving
■ speedups

R



13 - 1

Speeding up “convergence” by adaptive displacement δv(t)

SpringEmbedder(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)

t← 1
while t < K and maxv∈V ∥Fv(t)∥ > ε do

foreach v ∈ V do
Fv(t)← ∑u:uv/∈E frep(pu, pv) + ∑u:uv∈E fspring(pu, pv)

foreach v ∈ V do
pv ← pv + δ(t) · Fv(t)

t← t + 1

return p

Reminder. . .



13 - 2

Speeding up “convergence” by adaptive displacement δv(t)

SpringEmbedder(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)

t← 1
while t < K and maxv∈V ∥Fv(t)∥ > ε do

foreach v ∈ V do
Fv(t)← ∑u:uv/∈E frep(pu, pv) + ∑u:uv∈E fspring(pu, pv)

foreach v ∈ V do
pv ← pv + δ(t) · Fv(t)

t← t + 1

return p

Reminder. . .

δv(t)



13 - 3

Speeding up “convergence” by adaptive displacement δv(t)

Fv(t− 1)

[Frick, Ludwig, Mehldau ’95]



13 - 4

Speeding up “convergence” by adaptive displacement δv(t)

Fv(t− 1)

Fv(t)

αv(t)

[Frick, Ludwig, Mehldau ’95]



13 - 5

Speeding up “convergence” by adaptive displacement δv(t)

Fv(t− 1)

Fv(t)

αv(t)

[Frick, Ludwig, Mehldau ’95]

Same direction.
→ increase temperature δv(t)



13 - 6

Speeding up “convergence” by adaptive displacement δv(t)

Fv(t− 1)

Fv(t)

αv(t)

[Frick, Ludwig, Mehldau ’95]

Same direction.
→ increase temperature δv(t)



13 - 7

Speeding up “convergence” by adaptive displacement δv(t)

Fv(t− 1)

Fv(t)

αv(t)

[Frick, Ludwig, Mehldau ’95]

Same direction.
→ increase temperature δv(t)

Oszillation.
→ decrease temperature δv(t)



13 - 8

Speeding up “convergence” by adaptive displacement δv(t)

Fv(t− 1)

Fv(t)αv(t)

F′v(t)

[Frick, Ludwig, Mehldau ’95]

Same direction.
→ increase temperature δv(t)

Oszillation.
→ decrease temperature δv(t)



13 - 9

Speeding up “convergence” by adaptive displacement δv(t)

Fv(t− 1)

Fv(t)αv(t)

F′v(t)

[Frick, Ludwig, Mehldau ’95]

Same direction.
→ increase temperature δv(t)

Oszillation.
→ decrease temperature δv(t)

Rotation.
■ count rotations
■ if applicable
→ decrease temperature δv(t)



14 - 1

Speeding up “convergence” via grids

v

[Fruchterman & Reingold ’91]



14 - 2

Speeding up “convergence” via grids

v

[Fruchterman & Reingold ’91]



14 - 3

Speeding up “convergence” via grids

v

[Fruchterman & Reingold ’91]

■ divide plane into grid



14 - 4

Speeding up “convergence” via grids

v

[Fruchterman & Reingold ’91]

■ divide plane into grid

■ consider repelling forces only
to vertices in neighboring cells



14 - 5

Speeding up “convergence” via grids

v

[Fruchterman & Reingold ’91]

■ divide plane into grid

■ consider repelling forces only
to vertices in neighboring cells

■ and only if distance is less
than some max distance



14 - 6

Speeding up “convergence” via grids

v

[Fruchterman & Reingold ’91]

■ divide plane into grid

■ consider repelling forces only
to vertices in neighboring cells

■ and only if distance is less
than some max distance

Discussion.
■ good idea to improve runtime
■ worst-case has not improved
■ might introduce oszillation

and thus a quality loss



15 - 1

Speeding up with quad trees

R0 QT
R0

[Barnes, Hut ’86]



15 - 2

Speeding up with quad trees

R1 R2

R3 R4

QT
R0

R1 R2 R3 R4

[Barnes, Hut ’86]



15 - 3

Speeding up with quad trees

R5

R6

R7

R8 R9

R10 R11

R12

QT
R0

R1 R2 R3 R4

R5
R12

[Barnes, Hut ’86]



15 - 4

Speeding up with quad trees

R13

R14

R15

R16

QT
R0

R1 R2 R3 R4

R5
R12

R13
R16

[Barnes, Hut ’86]



15 - 5

Speeding up with quad trees

R17

R18

QT
R0

R1 R2 R3 R4

R5
R12

R13
R16

R17 R18

[Barnes, Hut ’86]



15 - 6

Speeding up with quad trees

QT
R0

R1 R2 R3 R4

R5
R12

R13
R16

R17 R18

[Barnes, Hut ’86]

■ height h ≤ log sinit
dmin

+ 3
2

■ time/space in O(hn)

■ compressed quad tree can be
computed in O(n log n) time

■ h ∈ O(log n) if vertices
evenly distributed

sinit



15 - 7

Speeding up with quad trees

QT
R0

R1 R2 R3 R4

R5
R12

R13
R16

R17 R18

[Barnes, Hut ’86]

u

u



15 - 8

Speeding up with quad trees

QT
R0

R1 R2 R3 R4

R5
R12

R13
R16

R17 R18

[Barnes, Hut ’86]

u

u

frep(Ri, pu) = |Ri| · frep(σRi , pu)



15 - 9

Speeding up with quad trees

QT
R0

R1 R2 R3 R4

R5
R12

R13
R16

R17 R18

[Barnes, Hut ’86]

u

u

frep(Ri, pu) = |Ri| · frep(σRi , pu)



15 - 10

Speeding up with quad trees

QT
R0

R1 R2 R3 R4

R5
R12

R13
R16

R17 R18

[Barnes, Hut ’86]

u

u

frep(Ri, pu) = |Ri| · frep(σRi , pu)



15 - 11

Speeding up with quad trees

QT
R0

R1 R2 R3 R4

R5
R12

R13
R16

R17 R18

[Barnes, Hut ’86]

u

u

frep(Ri, pu) = |Ri| · frep(σRi , pu)

for each child Ri of a vertex on path from u to R0



16 - 1

Multidimensional scaling

■ Force-directed method reaches its limitations for large graphs



16 - 2

Multidimensional scaling

■ Force-directed method reaches its limitations for large graphs

Idea.
Adapt the classical approach multidimensional scaling (MDS):
■ MDS is a technique to visualise similarity among a set of objects

■ Input is a distance matric D with dij ∼ dissimilarity between
objects i and j

■ We search for points x1, . . . , xn ∈ R2 such that

||xi − xj|| ≈ dij



16 - 3

Multidimensional scaling

■ Force-directed method reaches its limitations for large graphs

Idea.
Adapt the classical approach multidimensional scaling (MDS):
■ MDS is a technique to visualise similarity among a set of objects

■ Input is a distance matric D with dij ∼ dissimilarity between
objects i and j

■ We search for points x1, . . . , xn ∈ R2 such that

||xi − xj|| ≈ dij

For our drawing, how do we define the dissimilarity between two vertices?



16 - 4

Multidimensional scaling

■ Force-directed method reaches its limitations for large graphs

Idea.
Adapt the classical approach multidimensional scaling (MDS):
■ MDS is a technique to visualise similarity among a set of objects

■ Input is a distance matric D with dij ∼ dissimilarity between
objects i and j

■ We search for points x1, . . . , xn ∈ R2 such that

||xi − xj|| ≈ dij

For our drawing, how do we define the dissimilarity between two vertices?

■ Set duv as the distance of u and v in G in terms of a shortest path
between them.



16 - 5

Multidimensional scaling

■ example drawing with classical approach



16 - 6

Multidimensional scaling

■ example drawing with weighted version



17

Literature

Main sources:
■ [GD Ch. 10] Force-Directed Methods

■ [DG Ch. 4] Drawing on Physical Analogies

Referenced papers:
■ [Johnson 1982] The NP-completeness column: An ongoing guide

■ [Eades, Wormald 1990] Fixed edge-length graph drawing is NP-hard

■ [Saxe 1980] Two papers on graph embedding problems

■ [Eades 1984] A heuristic for graph drawing

■ [Fruchterman, Reingold 1991] Graph drawing by force-directed placement

■ [Frick, Ludwig, Mehldau 1994] A fast adaptive layout algorithm for undirected
graphs


	Title page
	General Layout Problem

	Fixed edge lengths?
	Spring Embedder by Eades
	Algorithm
	Model
	Force diagram
	Discussion

	Variant by Fruchterman \& Reingold
	Force diagram

	Speeding up ``convergence'' by adaptive displacement $\delta_v(t)$
	Speeding up ``convergence'' via grids
	Speeding up with quad trees
	Multidimensional scaling
	Literature

