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Visualization of graphs

Drawing with physical analogies
Force-directed algorithms

Antonios Symvonis · Chrysanthi Raftopoulou
Fall semester 2022

The original slides of this presentation were created by researchers at Karlsruhe Institute of Technology (KIT), TU Wien, U Wuerzburg, U Konstanz, ...
The original presentation was modified/updated by A. Symvonis and C. Raftopoulou
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■ Which aesthetic criteria
would you optimize?
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General Layout Problem

Input: Graph G = (V, E)
Output: Clear and readable straight-line drawing of G
Aesthetic criteria:

■ adjacent vertices are close

■ non-adjacent vertices are far apart

■ edges short, straight-line, similar length

■ densely connected parts (clusters) form communities

■ as few crossings as possible

■ nodes distributed evenly

Optimization criteria partially contradict each other
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Fixed edge lengths?
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Fixed edge lengths?

NP-hard for
■ uniform edge lengths in any dimension [Johnson ’82]

■ uniform edge lengths in planar drawings [Eades, Wormald ’90]

■ edge lengths {1, 2} [Saxe ’80]

Input: Graph G = (V, E), required edge length ℓ(e), ∀e ∈ E
Output: Drawing of G which realizes all the edge lengths
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Physical analogy

Idea 1.
“To embed a graph we replace the vertices by steel rings and replace each
edge with a spring to form a mechanical system . . . The vertices are placed in
some initial layout and let go so that the spring forces on the rings move the
system to a minimal energy state.” [Eades ’84]
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Physical analogy

Idea 1.
“To embed a graph we replace the vertices by steel rings and replace each
edge with a spring to form a mechanical system . . . The vertices are placed in
some initial layout and let go so that the spring forces on the rings move the
system to a minimal energy state.” [Eades ’84]

■ adjacent vertices u and v:
u v

fspring
Idea 2.
Repulsive forces.

■ non-adjacent vertices x and y:
x

yfrep

So-called spring-embedder algorithms that
work according to this or similar principles
are among the most frequently used
graph-drawing methods in practice.
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Outline

■ Spring Embedder by Eades

■ Variation by Fruchterman & Reingold

■ Ways to speed up computation

■ Alternative multidimensional scaling for large graphs
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Spring Embedder by Eades – Algorithm

SpringEmbedder(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)

t← 1
while t < K and maxv∈V ∥Fv(t)∥ > ε do

foreach v ∈ V do
Fv(t)← ∑u:uv/∈E frep(pu, pv) + ∑u:uv∈E fspring(pu, pv)

foreach v ∈ V do
pv ← pv + δ(t) · Fv(t)

t← t + 1

return p
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end layout

SpringEmbedder(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)

t← 1
while t < K and maxv∈V ∥Fv(t)∥ > ε do

foreach v ∈ V do
Fv(t)← ∑u:uv/∈E frep(pu, pv) + ∑u:uv∈E fspring(pu, pv)

foreach v ∈ V do
pv ← pv + δ(t) · Fv(t)

t← t + 1

return p

initial layout threshold
iterations

v

v
cooling factor

δ(t)

t
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Spring Embedder by Eades – Model

Notation.

■ ℓ = ℓ(e) = ideal spring
lenght for edge e

■ pv = position of vertex v

■ ||pu − pv|| = Euclidean
distance between u and v

■
−−→pu pv = unit vector
pointing from u to v
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■ ℓ = ℓ(e) = ideal spring
lenght for edge e

■ pv = position of vertex v

■ ||pu − pv|| = Euclidean
distance between u and v

■
−−→pu pv = unit vector
pointing from u to v

repulsion constant (e.g. 1.0)

spring constant (e.g. 2.0)
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Spring Embedder by Eades – Force diagram
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Spring Embedder by Eades – Discussion

Advantages.
■ very simple algorithm
■ good results for small and medium-sized graphs
■ empirically good representation of symmetry and structure

Disadvantages.
■ system is not stable at the end
■ converging to local minima
■ timewise fspring in O(|E|) and frep in O(|V|2)

Influence.
■ original paper by Peter Eades [Eades ’84] got ∼ 2000 citations
■ basis for many further ideas
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Variant by Fruchterman & Reingold

Model.
■ repulsive force between all vertex pairs u and v

frep(pu, pv) =
ℓ2

||pv − pu||
· −−→pu pv

■ attractive force between two adjacent vertices u and v

fattr(pu, pv) =
||pu − pv||2

ℓ
· −−→pv pu

■ resulting force between adjacent vertices u and v

fspring(pu, pv) = frep(pu, pv) + fattr(pu, pv)
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Fruchtermann & Reingold – Force diagram
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Adaptability

Inertia.
■ Define vertex mass Φ(v) = 1+ deg(v)/2
■ Set fattr(pu, pv)← fattr(pu, pv) · 1/Φ(v)
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Adaptability

Inertia.
■ Define vertex mass Φ(v) = 1+ deg(v)/2
■ Set fattr(pu, pv)← fattr(pu, pv) · 1/Φ(v)
Gravitation.
■ Define centroid pbary = 1/|V| ·∑v∈V pv
■ Add force fgrav(pv) = cgrav ·Φ(v) · −−−−→pv pbary
Restricted drawing area.
If Fv points beyond area R, clip vector appropriately
at the border of R. v

Fv

And many more...
■ magnetic orientation of edges [GD Ch. 10.4]
■ other energy models
■ planarity preserving
■ speedups

R
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Speeding up “convergence” by adaptive displacement δv(t)

SpringEmbedder(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)

t← 1
while t < K and maxv∈V ∥Fv(t)∥ > ε do

foreach v ∈ V do
Fv(t)← ∑u:uv/∈E frep(pu, pv) + ∑u:uv∈E fspring(pu, pv)

foreach v ∈ V do
pv ← pv + δ(t) · Fv(t)

t← t + 1

return p

Reminder. . .
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SpringEmbedder(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)

t← 1
while t < K and maxv∈V ∥Fv(t)∥ > ε do

foreach v ∈ V do
Fv(t)← ∑u:uv/∈E frep(pu, pv) + ∑u:uv∈E fspring(pu, pv)

foreach v ∈ V do
pv ← pv + δ(t) · Fv(t)

t← t + 1

return p

Reminder. . .

δv(t)
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Speeding up “convergence” by adaptive displacement δv(t)

Fv(t− 1)

[Frick, Ludwig, Mehldau ’95]
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Speeding up “convergence” by adaptive displacement δv(t)

Fv(t− 1)

Fv(t)αv(t)

F′v(t)

[Frick, Ludwig, Mehldau ’95]

Same direction.
→ increase temperature δv(t)

Oszillation.
→ decrease temperature δv(t)

Rotation.
■ count rotations
■ if applicable
→ decrease temperature δv(t)
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Speeding up “convergence” via grids

v

[Fruchterman & Reingold ’91]
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Speeding up “convergence” via grids

v

[Fruchterman & Reingold ’91]

■ divide plane into grid

■ consider repelling forces only
to vertices in neighboring cells

■ and only if distance is less
than some max distance

Discussion.
■ good idea to improve runtime
■ worst-case has not improved
■ might introduce oszillation

and thus a quality loss
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Speeding up with quad trees

R0 QT
R0

[Barnes, Hut ’86]
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Speeding up with quad trees

R5
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R8 R9

R10 R11

R12

QT
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R1 R2 R3 R4
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[Barnes, Hut ’86]
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Speeding up with quad trees

QT
R0

R1 R2 R3 R4

R5
R12

R13
R16

R17 R18

[Barnes, Hut ’86]

■ height h ≤ log sinit
dmin

+ 3
2

■ time/space in O(hn)

■ compressed quad tree can be
computed in O(n log n) time

■ h ∈ O(log n) if vertices
evenly distributed

sinit
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Speeding up with quad trees

QT
R0

R1 R2 R3 R4

R5
R12

R13
R16

R17 R18

[Barnes, Hut ’86]

u

u
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Speeding up with quad trees

QT
R0

R1 R2 R3 R4

R5
R12

R13
R16

R17 R18

[Barnes, Hut ’86]

u

u

frep(Ri, pu) = |Ri| · frep(σRi , pu)

for each child Ri of a vertex on path from u to R0
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Multidimensional scaling

■ Force-directed method reaches its limitations for large graphs

Idea.
Adapt the classical approach multidimensional scaling (MDS):
■ MDS is a technique to visualise similarity among a set of objects

■ Input is a distance matric D with dij ∼ dissimilarity between
objects i and j

■ We search for points x1, . . . , xn ∈ R2 such that

||xi − xj|| ≈ dij

For our drawing, how do we define the dissimilarity between two vertices?

■ Set duv as the distance of u and v in G in terms of a shortest path
between them.
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Multidimensional scaling

■ example drawing with classical approach
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Multidimensional scaling

■ example drawing with weighted version
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■ [GD Ch. 10] Force-Directed Methods

■ [DG Ch. 4] Drawing on Physical Analogies
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■ [Johnson 1982] The NP-completeness column: An ongoing guide

■ [Eades, Wormald 1990] Fixed edge-length graph drawing is NP-hard

■ [Saxe 1980] Two papers on graph embedding problems

■ [Eades 1984] A heuristic for graph drawing

■ [Fruchterman, Reingold 1991] Graph drawing by force-directed placement

■ [Frick, Ludwig, Mehldau 1994] A fast adaptive layout algorithm for undirected
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