Visualisation of graphs Upward planar drawings
Flow methods

Antonios Symvonis · Chrysanthi Raftopoulou Fall semester 2022

Upward planar drawings – motivation

What may the direction of edges in a digraph represent?

- Time
- Flow

■ . . .

■ Hierarchie

Upward planar drawings – motivation

- What may the direction of edges in a digraph represent?
	- Time
	- Flow
	- **Hierarchie**
	- . . .
	-

Upward planar drawings – definition

Definition.

A directed graph $G = (V, E)$ is upward planar when it admits a drawing Γ (vertices = points, $edges = simple curves) that is$ planar and where each edge is drawn as an upward,

y-monotone curve.

■ For a digraph *G* to be upward planar, it has to be: ■ planar

■ For a digraph *G* to be upward planar, it has to be: ■ planar

■ acyclic

■ For a digraph *G* to be upward planar, it has to be: ■ planar

■ acyclic

■ For a digraph *G* to be upward planar, it has to be:

- planar
- acyclic
- bimodal

- For a digraph *G* to be upward planar, it has to be:
	- planar
	- acyclic
	- bimodal
	-

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]

For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. *G* admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6] For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. *G* admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

 \bigcup no crossings

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6] For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. *G* admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6] For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. *G* admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

Additionally: Embedded such that *s* and *t* are on the outerface *f* 0.

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6] For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. *G* admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

Additionally: Embedded such that *s* and *t* are on the outerface *f* 0. or:

Edge (*s*, *t*) exists.

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6] For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. *G* admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

Proof.

 $(2) \Rightarrow (1)$ By definition.

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6] For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. *G* admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

Proof.

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6] For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. *G* admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

Proof.

(2)
$$
\Rightarrow
$$
 (1) By definition. (1) \Leftrightarrow (3) Example:

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6] For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. *G* admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

Proof.

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6] For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. *G* admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

Proof.

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6] For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. *G* admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

Proof.

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6] For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. *G* admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

Proof.

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6] For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. *G* admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

Proof.

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6] For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. *G* admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

Proof.

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6] For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. *G* admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

Proof.

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6] For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. *G* admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

Proof.

(2)
$$
\Rightarrow
$$
 (1) By definition. (1) \Leftrightarrow (3) Example:
(3) \Rightarrow (2) Triangle & construct drawing:

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6] For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. *G* admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

Proof.

(2)
$$
\Rightarrow
$$
 (1) By definition. (1) \Leftrightarrow (3) Example:
(3) \Rightarrow (2) Triangle & construct drawing:

Claim.

Can draw in prespecified triangle.

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6] For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. *G* admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

Proof.

(2)
$$
\Rightarrow
$$
 (1) By definition. (1) \Leftrightarrow (3) Example:
(3) \Rightarrow (2) Triangle & construct drawing:

Case 1: Claim. Can draw in prespecified triangle.

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6] For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. *G* admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

Proof.

(2)
$$
\Rightarrow
$$
 (1) By definition. (1) \Leftrightarrow (3) Example:
(3) \Rightarrow (2) Triangle & construct drawing:

t

s

Case 1: Claim. Can draw in prespecified triangle.

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6] For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. *G* admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

Proof.

(2)
$$
\Rightarrow
$$
 (1) By definition. (1) \Leftrightarrow (3) Example:
(3) \Rightarrow (2) Triangle & construct drawing:

t

s

Case 1: Claim. Can draw in prespecified triangle. Apply induction.

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6] For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. *G* admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

Proof.

(2)
$$
\Rightarrow
$$
 (1) By definition. (1) \Leftrightarrow (3) Example:
(3) \Rightarrow (2) Triangle & construct drawing:

Case 1: *s t* Claim. Can draw in prespecified triangle. Apply Claim. Case 1: $\begin{matrix} \begin{matrix} \begin{matrix} \text{Can drawn in} \\ \text{prespecified} \end{matrix} \\ \begin{matrix} \text{triangle} \end{matrix} \\ \begin{matrix} \text{Apply} \\ \text{induction.} \end{matrix} \end{matrix} \end{matrix}$

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6] For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. *G* admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

Proof.

(2)
$$
\Rightarrow
$$
 (1) By definition. (1) \Leftrightarrow (3) Example:
(3) \Rightarrow (2) Triangle & construct drawing:

Case 1: *s t* Claim. Can draw in prespecified triangle. Apply Claim. Case 1: $\begin{matrix} \begin{matrix} \begin{matrix} \text{Can drawn in} \\ \text{prespecified} \end{matrix} \\ \begin{matrix} \text{triangle} \end{matrix} \\ \begin{matrix} \text{Apply} \\ \text{induction.} \end{matrix} \end{matrix} \end{matrix}$

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6] For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. *G* admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

Proof.

(2)
$$
\Rightarrow
$$
 (1) By definition. (1) \Leftrightarrow (3) Example:
(3) \Rightarrow (2) Triangle & construct drawing:

Claim. Can draw in prespecified triangle. Apply

$$
3) \Rightarrow (2) \text{ Triangle } \& \text{ construct drawing:} \\ \text{Claim.} \qquad \text{Case 1:} \qquad \text{Case 2:} \\ \text{Can draw in} \\ \text{prespecified} \\ \text{Apply} \\ \text{induction.} \\ \qquad \qquad s
$$

s

v

w

t

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6] For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. *G* admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

Proof.

(2)
$$
\Rightarrow
$$
 (1) By definition. (1) \Leftrightarrow (3) Example:
(3) \Rightarrow (2) Triangle & construct drawing:

s

Claim. Can draw in prespecified triangle. Apply

2) ⇒ (1) By definition. (1)
$$
\Leftrightarrow
$$
 (3) Example:

\n3) ⇒ (2) Triangular & construct drawing:

\nClaim. Case 1: t Case 2:

\nCan draw in prespecified triangle. Apply

\ninduction. s

$$
f_{\rm{max}}
$$

s

v

w

t

5 - 24

Upward planarity – complexity

Theorem. [Garg, Tamassia, 1995]

For a *planar acyclic* digraph it is in general NP-hard to decide whether it is upward planar.

Upward planarity – complexity

Theorem. [Garg, Tamassia, 1995]

For a *planar acyclic* digraph it is in general NP-hard to decide whether it is upward planar.

Theorem 2. [Bertolazzi et al., 1994]

For a combinatorially embedded planar digraph it can be tested in $\mathcal{O}(n^2)$ time whether it is upward planar.

Upward planarity – complexity

Theorem. [Garg, Tamassia, 1995]

For a *planar acyclic* digraph it is in general NP-hard to decide whether it is upward planar.

Theorem 2. [Bertolazzi et al., 1994]

For a combinatorially embedded planar digraph it can be tested in $\mathcal{O}(n^2)$ time whether it is upward planar.

Corollary.

For a *triconnected* planar digraph it can be tested in $O(n^2)$ time whether it is upward planar.
Upward planarity – complexity

Theorem. [Garg, Tamassia, 1995]

For a *planar acyclic* digraph it is in general NP-hard to decide whether it is upward planar.

Theorem 2. [Bertolazzi et al., 1994]

For a combinatorially embedded planar digraph it can be tested in $\mathcal{O}(n^2)$ time whether it is upward planar.

Corollary.

For a *triconnected* planar digraph it can be tested in $O(n^2)$ time whether it is upward planar.

Theorem. [Hutton, Libow, 1996] For a single-source acyclic digraph it can be tested in $\mathcal{O}(n)$ time whether it is upward planar.

The problem

Fixed embedding upward planarity testing. Let $G = (V, E)$ be a plane digraph with the embedding given by the set of faces F and the outer face $f_{\mathbf{0}}.$ Test whether G is upward planar (wrt to F , f_0).

The problem

Fixed embedding upward planarity testing. Let $G = (V, E)$ be a plane digraph with the embedding given by the set of faces F and the outer face $f_{\mathbf{0}}.$ Test whether G is upward planar (wrt to F , f_0).

Idea.

- Find property that any upward planar drawing of *G* satisfies.
- Formalise property.
- Find algorithm to test property.

■ A vertex *v* is a local source wrt to a face *f* if *v* has two

Definitions.

Definitions.

■ A vertex *v* is a local source wrt to a face *f* if *v* has two outgoing edges on *∂ f* .

Definitions.

- A vertex *v* is a local source wrt to a face *f* if *v* has two outgoing edges on *∂ f* .
- A vertex *v* is a local sink wrt to a face *f* if *v* has two incoming edges on *∂ f* .

Definitions.

- A vertex v is a local source wrt to a face f if v has two outgoing edges on *∂ f* .
- A vertex v is a local sink wrt to a face f if v has two incoming edges on *∂ f* .
- **An angle** α **is large** when $\alpha > \pi$ and **small** otherwise.

■ *L*(*v*) = # large angles at *v* ■ *L*(*f*) = # large angles in *f*

Definitions.

■ A vertex *v* is a local source wrt to a face *f* if *v* has two outgoing edges on *∂ f* .

8 - 5

- A vertex v is a local sink wrt to a face f if v has two incoming edges on *∂ f* .
- **E** An angle α is large when $\alpha > \pi$ and small otherwise.
- \blacksquare $L(v) = #$ large angles at v
- $L(f) = #$ large angles in *f*
- $S(v)$ & $S(f)$ for $#$ small angles

Definitions.

- A vertex v is a local source wrt to a face f if v has two outgoing edges on *∂ f* .
- A vertex v is a local sink wrt to a face f if v has two incoming edges on *∂ f* .
- **An angle** α **is large** when $\alpha > \pi$ and **small** otherwise.

\n- \n
$$
L(v) = # \text{ large angles at } v
$$
\n
\n- \n
$$
L(f) = # \text{ large angles in } f
$$
\n
\n- \n
$$
S(v) \& S(f) \text{ for } # \text{ small angles}
$$
\n
\n- \n
$$
A(f) = # \text{ local sources wrt to } f
$$
\n
\n- \n
$$
= # \text{ local sinks wrt to } f
$$
\n
\n

Definitions.

- A vertex *v* is a local source wrt to a face *f* if *v* has two outgoing edges on *∂ f* .
- A vertex v is a local sink wrt to a face f if v has two incoming edges on *∂ f* .
- **An angle** α **is large** when $\alpha > \pi$ and **small** otherwise.

\n- $$
L(v) = \#
$$
 large angles at v
\n- $L(f) = \#$ large angles in f
\n- $S(v) \& S(f)$ for $\#$ small angles
\n- $A(f) = \#$ local sources wrt to f
\n- $= \#$ local sinks wrt to f
\n

Lemma 1. $L(f) + S(f) = 2A(f)$

Assignment problem

■ Vertex v is a global source for f_1 and f_2 . \blacksquare Has v a large angle in f_1 or f_2 ?

Lemma 2.

$$
L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}
$$

Lemma 2.

$$
L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}
$$

Proof by induction.

$$
L(f) = 0
$$

Lemma 2.

$$
L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}
$$

Proof by induction.

$$
L(f) = 0 \qquad \qquad \Longleftrightarrow S(f) = 2
$$

Lemma 2.

$$
L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}
$$

Proof by induction.
\n
$$
L(f) = 0 \qquad \qquad \Longleftrightarrow S(f) = 2
$$

 $L(f) \geq 1$

Split *f* with edge from a large angle at a "low" sink *u* to

Lemma 2.

$$
L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}
$$

Proof by induction.

$$
L(f) = 0 \qquad \qquad \Longleftrightarrow S(f) = 2
$$

$L(f) \geq 1$

Split *f* with edge from a large angle at a "low" sink *u* to

■ sink v with small angle:

Lemma 2.

$$
L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}
$$

Proof by induction.
\n
$$
L(f) = 0 \qquad \qquad \Longleftrightarrow S(f) = 2
$$

$L(f) \geq 1$

Split *f* with edge from a large angle at a "low" sink *u* to

■ sink v with small angle:

Lemma 2.

$$
L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}
$$

Proof by induction.
\n
$$
L(f) = 0 \qquad \qquad \Longleftrightarrow S(f) = 2
$$

$L(f) \geq 1$

Split *f* with edge from a large angle at a "low" sink *u* to

■ sink v with small angle:

$$
L(f) - S(f) = L(f_1) + L(f_2) + 1
$$

- (S(f₁) + S(f₂) - 1)
= -2

Lemma 2.

$$
L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}
$$

Proof by induction.
\n
$$
L(f) = 0 \qquad \qquad \Longleftrightarrow S(f) = 2
$$

$L(f) \geq 1$

Split *f* with edge from a large angle at a "low" sink *u* to

■ sink v with small/large angle:

$$
L(f) - S(f) = L(f_1) + L(f_2) + 1
$$

- (S(f₁) + S(f₂) - 1)
= -2

Lemma 2.

$$
L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}
$$

Proof by induction.

$$
L(f) = 0 \qquad \qquad \Longleftrightarrow S(f) = 2
$$

$L(f) \geq 1$

Split *f* with edge from a large angle at a "low" sink *u* to ■ source v with small angle:

Lemma 2.

$$
L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}
$$

Proof by induction.
\n
$$
L(f) = 0 \qquad \qquad \Longleftrightarrow S(f) = 2
$$

$L(f) \geq 1$

Split *f* with edge from a large angle at a "low" sink *u* to \blacksquare source v with smalle angle:

Lemma 2.

$$
L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}
$$

Proof by induction.
\n
$$
L(f) = 0 \qquad \qquad \Longleftrightarrow S(f) = 2
$$

$L(f) \geq 1$

Split *f* with edge from a large angle at a "low" sink *u* to

 \blacksquare source v with small angle:

$$
L(f) - S(f) = L(f_1) + L(f_2) + 2
$$

- (S(f₁) + S(f₂))
= -2

Lemma 2.

$$
L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}
$$

Proof by induction.
\n
$$
L(f) = 0 \qquad \qquad \Longleftrightarrow S(f) = 2
$$

$L(f) \geq 1$

Split *f* with edge from a large angle at a "low" sink *u* to

 \blacksquare vertex v that is neither source nor sink:

$$
L(f) - S(f) = L(f_1) + L(f_2) + 1
$$

- (S(f₁) + S(f₂) – 1)
= -2

Lemma 2. $L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ 0, & f \neq f_0 \end{cases}$ $+2$, $f = f_0$

Proof by induction.
\n
$$
L(f) = 0 \qquad \qquad \Longleftrightarrow S(f) = 2
$$

$L(f) \geq 1$

Split *f* with edge from a large angle at a "low" sink *u* to

■ vertex *that is neither source nor sink:*

$$
L(f) - S(f) = L(f_1) + L(f_2) + 1
$$

- (S(f₁) + S(f₂) - 1)
= -2

Otherwise "high" source u exists.

Number of large angles

Lemma 3. In every upward planar drawing of *G* holds that \blacksquare for each vertex $v \in V \colon L(v) = 0$ \int 0 *v* inner vertex, 1 *v* source/sink; \blacksquare for each face $f\colon L(f)=$ $\int A(f) - 1 \quad f \neq f_0$, $A(f) + 1$ $f = f_0$.

Proof.

Observation and from Lemma 1: $L(f) + S(f) = 2A(f)$ and from Lemma 2: $L(f) - S(f) = \pm 2$.

■ Let *S* and *T* be the sets of sources and sinks, respectively.

■ Let S and T be the sets of sources and sinks, respectively.

Definition. A consistent assignment $\Phi: S \cup T \rightarrow F$ is a mapping where

 $\Phi: v \mapsto$ incident face, where *v* forms large angle

such that

$$
|\Phi^{-1}(f)| =
$$

■ Let S and T be the sets of sources and sinks, respectively.

Definition. A consistent assignment $\Phi: S \cup T \rightarrow F$ is a mapping where

 $\Phi: v \mapsto$ incident face, where *v* forms large angle

such that

$$
|\Phi^{-1}(f)| = L(f) =
$$

■ Let S and T be the sets of sources and sinks, respectively.

Definition. A consistent assignment $\Phi: S \cup T \rightarrow F$ is a mapping where

 $\Phi: v \mapsto$ incident face, where *v* forms large angle

such that

$$
|\Phi^{-1}(f)| = L(f) = \begin{cases} A(f) - 1 & \text{if } f \neq f_0, \\ A(f) + 1 & \text{if } f = f_0. \end{cases}
$$

global sources & sinks $\mathbf O$

global sources & sinks $\mathbf O$

 $A(f)$ # sources/sinks of *f*

global sources & sinks \circ

 $A(f)$ # sources/sinks of *f*

Result characterisation

Theorem 3. Let $G = (V, E)$ be an acyclic plane digraph with embedding given by F , f_0 . Then *G* is upward planar (respecting *F*, *f* 0) if and only if *G* is bimodal and there exists consistent assignment Φ .

Result characterisation

Theorem 3. Let $G = (V, E)$ be an acyclic plane digraph with embedding given by F , f_0 . Then *G* is upward planar (respecting *F*, *f* 0) if and only if *G* is bimodal and there exists consistent assignment Φ.

Proof.

⇒: As constructed before.
Result characterisation

Theorem 3. Let $G = (V, E)$ be an acyclic plane digraph with embedding given by F , f_0 . Then *G* is upward planar (respecting *F*, *f* 0) if and only if *G* is bimodal and there exists consistent assignment Φ .

Proof.

- ⇒: As constructed before.
- ⇐: Idea:
- Construct planar st-digraph that is supergraph of *G*.
- Apply equivalence from Theorem 1.

Let *f* be a face. Consider the clockwise angle sequence *σ^f* of L/S on local sources and sinks of *f* .

■ Goal: Add edges to break large angles (sources and sinks).

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing \langle L, S, S \rangle at vertices *x*, *y*, *z*:

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing \langle L, S, S \rangle at vertices *x*, *y*, *z*:

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing \langle L, S, S \rangle at vertices *x*, *y*, *z*:

Let *f* be a face. Consider the clockwise angle sequence *σ^f* of L/S on local sources and sinks of *f* .

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing \langle L, S, S \rangle at vertices *x*, *y*, *z*:

Let *f* be a face. Consider the clockwise angle sequence *σ^f* of L/S on local sources and sinks of *f* .

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing \langle L, S, S \rangle at vertices *x*, *y*, *z*:

Let *f* be a face. Consider the clockwise angle sequence *σ^f* of L/S on local sources and sinks of *f* .

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing \langle L, S, S \rangle at vertices *x*, *y*, *z*:

Let *f* be a face. Consider the clockwise angle sequence *σ^f* of L/S on local sources and sinks of *f* .

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing \langle L, S, S \rangle at vertices *x*, *y*, *z*:

Let *f* be a face. Consider the clockwise angle sequence *σ^f* of L/S on local sources and sinks of *f* .

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing \langle L, S, S \rangle at vertices *x*, *y*, *z*:

Let *f* be a face. Consider the clockwise angle sequence *σ^f* of L/S on local sources and sinks of *f* .

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing \langle L, S, S \rangle at vertices *x*, *y*, *z*:

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing \langle L, S, S \rangle at vertices *x*, *y*, *z*:
	- *x* source \Rightarrow insert edge (z, x)
	- $x \sin k$ \Rightarrow insert edge (x, z) .

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing \langle L, S, S \rangle at vertices *x*, *y*, *z*:
	- *x* source \Rightarrow insert edge (z, x)
	- $x \sin k$ \Rightarrow insert edge (x, z) .

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing \langle L, S, S \rangle at vertices *x*, *y*, *z*:
	- *x* source \Rightarrow insert edge (z, x)
	- $x \sin k$ \Rightarrow insert edge (x, z) .

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing \langle L, S, S \rangle at vertices *x*, *y*, *z*:
	- *x* source \Rightarrow insert edge (z, x)
	- $x \sin k$ \Rightarrow insert edge (x, z) .

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing \langle L, S, S \rangle at vertices *x*, *y*, *z*:
	- *x* source \Rightarrow insert edge (z, x)
	- $x \sin k$ \Rightarrow insert edge (x, z) .
- Refine outer face f_0 .

Let *f* be a face. Consider the clockwise angle sequence *σ^f* of L/S on local sources and sinks of *f* .

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing \langle L, S, S \rangle at vertices *x*, *y*, *z*:
	- *x* source \Rightarrow insert edge (z, x)
	-
- Refine outer face f_0 .

Refine all faces. $\Rightarrow G$ is contained in a planar st-digraph.

Result upward planarity test

Theorem 2. [Bertolazzi et al., 1994]

For a combinatorially embedded planar digraph *G* it can be tested in $\mathcal{O}(n^2)$ time whether it is upward planar.

Result upward planarity test

Theorem 2. [Bertolazzi et al., 1994]

For a combinatorially embedded planar digraph *G* it can be tested in $\mathcal{O}(n^2)$ time whether it is upward planar.

Proof.

■ Test for bimodality.

T Test for a consistent assignment Φ (via flow network).

Result upward planarity test

Theorem 2. [Bertolazzi et al., 1994]

For a combinatorially embedded planar digraph *G* it can be tested in $\mathcal{O}(n^2)$ time whether it is upward planar.

Proof.

- Test for bimodality.
- **Test for a consistent assignment** Φ **(via flow network).**
- If *G* bimodal and Φ exists, refine *G* to plane st-digraph *H*.
- Draw *H* upward planar.
- Deleted edges added in refinement step.

Finding a consistent assignment

Idea.

Flow $(v, f) = 1$ from global source/sink v to the incident face *f* its large angle gets assigned to.

Finding a consistent assignment

Idea.

Flow $(v, f) = 1$ from global source/sink v to the incident face *f* its large angle gets assigned to.

Flow network. $N_{F, f_0}(G) = ((W, E'); \ell; u; d)$ \blacksquare $W =$ ■ *E* ′ $=$ $($ $)$ $*j*$ $)$ $*j*$ $)$ $*j*$ $)$ $*j*$ $)$ $*j*$ $)$ $*j*$ $\blacksquare \ell(e) =$ $u(e) =$

$$
\blacksquare \ d(p) =
$$
Idea.

Flow $(v, f) = 1$ from global source/sink v to the incident face *f* its large angle gets assigned to.

Flow network. $N_{F, f_0}(G) = ((W, E'); \ell; u; d)$ \blacksquare $W =$ ■ *E* ′ $=$ $($ $)$ $*j*$ $)$ $*j*$ $)$ $*j*$ $)$ $*j*$ $)$ $*j*$ $)$ $*j*$ $\blacksquare \ell(e) =$ \blacksquare $u(e) =$ \blacksquare $d(p) =$

Example.

Idea.

Flow $(v, f) = 1$ from global source/sink v to the incident face *f* its large angle gets assigned to.

Flow network. $N_{F, f_0}(G) = ((W, E'); \ell; u; d)$ $W = \{ v \in V \mid v \text{ source or sink} \}$ ■ *E* ′ $=$ $($ $)$ $*j*$ $)$ $*j*$ $)$ $*j*$ $)$ $*j*$ $)$ $*j*$ $)$ $*j*$ $\blacksquare \ell(e) =$ \blacksquare $u(e) =$

\Box $d(p) =$

Example.

Idea.

Flow $(v, f) = 1$ from global source/sink v to the incident face *f* its large angle gets assigned to.

Flow network. $N_{F, f_0}(G) = ((W, E'); \ell; u; d)$ $W = \{ v \in V \mid v \text{ source or sink} \} \cup F$ ■ *E* ′ $=$ $($ $)$ $*j*$ $)$ $*j*$ $)$ $*j*$ $)$ $*j*$ $)$ $*j*$ $)$ $*j*$ $\blacksquare \ell(e) =$ \blacksquare $u(e) =$

\Box $d(p) =$

Example.

Idea.

Flow $(v, f) = 1$ from global source/sink v to the incident face *f* its large angle gets assigned to.

Flow network. $N_{F, f_0}(G) = ((W, E'); \ell; u; d)$ $W = \{ v \in V \mid v \text{ source or sink} \} \cup F$ $E' = \{(v, f) | v \text{ incident to } f\}$ $\blacksquare \ell(e) =$ \blacksquare $u(e) =$

 \blacksquare $d(p) =$

Idea.

Flow $(v, f) = 1$ from global source/sink v to the incident face *f* its large angle gets assigned to.

Flow network. $N_{F, f_0}(G) = ((W, E'); \ell; u; d)$ $W = \{ v \in V \mid v \text{ source or sink} \} \cup F$ $E' = \{(v, f) | v \text{ incident to } f\}$ $\ell(e) = 0 \ \forall e \in E'$ $u(e) = 1 \ \forall e \in E'$

$$
\blacksquare \ d(p) =
$$

Idea.

Flow $(v, f) = 1$ from global source/sink v to the incident face *f* its large angle gets assigned to.

Idea.

Flow $(v, f) = 1$ from global source/sink v to the incident face *f* its large angle gets assigned to.

Discussion

■ There exist fixed-parameter tractable algorithms to test upward planarity of general digraphs with the parameter being the number of triconnected components. [Healy, Lynch 2005, Didimo et al. 2009]

Discussion

■ There exist fixed-parameter tractable algorithms to test upward planarity of general digraphs with the parameter being the number of triconnected components. [Healy, Lynch 2005, Didimo et al. 2009]

■ Finding assignment in Theorem 2 can be sped up to $\mathcal{O}(n+r^{1.5})$ where $r=\text{\# sources/sinks}.$ [Abbasi, Healy, Rextin 2010]

Discussion

There exist fixed-parameter tractable algorithms to test upward planarity of general digraphs with the parameter being the number of triconnected components. [Healy, Lynch 2005, Didimo et al. 2009]

■ Finding assignment in Theorem 2 can be sped up to $\mathcal{O}(n+r^{1.5})$ where $r=\text{\# sources/sinks}.$ [Abbasi, Healy, Rextin 2010]

■ Many related concepts have been studied: quasi-planarity, upward drawings of mixed graphs, upward planarity on cyclinder/torus, . . .

Literature

■ [GD Ch. 6] for detailed explanation

Orginal papers referenced:

- [Kelly '87] Fundamentals of Planar Ordered Sets
- [Di Battista, Tamassia '88] Algorithms for Plane Representations of Acyclic Digraphs
- [Garg, Tamassia '95] On the Computational Complexity of Upward and Rectilinear Planarity Testing
- [Hutton, Lubiw '96] Upward Planar Drawing of Single-Source Acyclic Digraphs
- [Bertolazzi, Di Battista, Mannino, Tamassia '94] Upward Drawings of Triconnected Digraphs
- [Healy, Lynch '05] Building Blocks of Upward Planar Digraphs
- [Didimo, Giardano, Liotta '09] Upward Spirality and Upward Planarity Testing
- [Abbasi, Healy, Rextin '10] Improving the running time of embedded upward planarity testing